Methyl sulfide

Methyl sulfide structural formula

Structural formula

Business number 01J5
Molecular formula C2H6S
Molecular weight 62.13
label

dimethyl sulfide,

dimethyl sulfide,

DMS,

Dimethyl sulfide,

2-Thiapropane,

Methyl sulphide,

City gas smell tester,

industrial purifier,

paint release agent,

Battery low temperature preservative,

pesticide penetrant

Numbering system

CAS number:75-18-3

MDL number:MFCD00008562

EINECS number:200-846-2

RTECS number:PV5075000

BRN number:1696847

PubChem number:24856582

Physical property data

1. Properties: colorless liquid with unpleasant odor. [1]

2. Melting point (℃): -98.3[2]

3. Boiling point (℃): 37.3[3]

4. Relative density (water = 1): 0.85[4]

5. Relative vapor Density (air=1): 2.14[5]

6. Saturated vapor pressure (kPa): 53.2 (20℃)[6]

7. Heat of combustion (kJ/mol): -1907.7[7]

8. Critical temperature (℃): 229[8]

9. Critical pressure (MPa): 5.69[9]

10. Octanol/water partition coefficient: 0.92 [10]

11. Flash point (℃): <-17.7[11]

12. Ignition temperature (℃) :206[12]

13. Explosion upper limit (%): 19.7[13]

14. Explosion lower limit (%) %): 2.2[14]

15. Solubility: Insoluble in water, soluble in most organic solvents such as ethanol and ether. [15]

16. Viscosity (mPa·s, 20ºC): 0.289

17. Viscosity (mPa·s, 25ºC): 0.279

18. Ignition point (ºC): 206.1

19. Heat of evaporation (KJ/mol, 25ºC): 27.61

20. Heat of evaporation (KJ/mol, b.p. ): 27.0174

21. Heat of fusion (KJ/mol): 7.990

22. Heat of formation (KJ/mol, 25ºC): -65.48

23 .Specific heat capacity (KJ/(kg·K), 25ºC, constant pressure): 1.17

24. Boiling point rising constant: 1.85

Toxicological data

1. Acute toxicity:

Rat caliber LD50: 3300mg/kg; rat inhalation LCLO: 40250ppm;

Mouse caliber LD50: 3700mg/kg; mouse inhalation LCLO: 31620 ug/m3;

Mouse abdominal cavity LD50: 8mg/kg; Rabbit skin LD50: >5mg/kg;

Mammal LD50: 1950mg/kg;

2. Other multiple dose toxicity data:

Rat caliber TDLO: 21mg/kg/70D-I; Rabbit caliber TDLO: 24500mg/kg/14W-I;

3. Acute toxicity[16]

LD50: 535mg/kg (rat oral)

LC50: 102235mg /m3(rat inhalation)

4. Irritation[17]

Rabbit transdermal: 500mg (24h),Mild irritation.

Rabbit eye: 259μg (24h), severe irritation.

Ecological data

1. Ecotoxicity[18] LC50: 7.5~15ppm (fish)

2. Biodegradability No data yet

3. Non-biodegradability[19] In the air, when the hydroxyl radical concentration is 5.00×10 At 5pcs/cm3, the degradation half-life is 3.5d (theoretical).

The half-life of photooxidation is 8 hours.

Molecular structure data

1. Molar refractive index: 19.31

2. Molar volume (cm3/mol): 75.5

3. Isotonic specific volume (90.2K ): 162.3

4. Surface tension (dyne/cm): 21.3

5. Polarizability (10-24cm3): 7.65

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): 0.9

2. Number of hydrogen bond donors: 0

3. Number of hydrogen bond acceptors: 1

4. Number of rotatable chemical bonds: 0

5. Number of tautomers: none

6. Topological molecule polar surface area 25.3

7. Number of heavy atoms: 3

8. Surface charge: 0

9. Complexity: 2.8

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

1. Chemical properties: It can form addition compounds with halogens, metal halides, etc. Or react with alkyl halides to form sulfonium compounds. When oxidized, sulfoxide is generated, and continued oxidation generates sulfone. It is easy to burn and explode when exposed to open flames or high heat. Thermal decomposition produces toxic sulfide fumes.

2. This product is poisonous. Low-concentration dimethyl sulfide vapor generally causes nausea and loss of appetite, while high-concentration vapor has a paralyzing effect on the central nervous system. During the production process, it must be sealed to prevent running, popping, dripping and leaking. Ventilation should be strengthened at the production site, and operators should wear protective equipment. In the event of poisoning, you should move to a place with fresh air and seek medical treatment.

3. Stability[20] Stable

4. Incompatible substances[21] Strong oxidants, alkalis, ammonia

5. Conditions to avoid contact [22] Heat

6. Polymerization hazard[23] No polymerization

7. Decomposition products[24] Sulfide

Storage method

Storage Precautions[25] Stored in a cool, ventilated warehouse. Keep away from fire and heat sources. The storage temperature should not exceed 29°C. The packaging must be sealed and must not come into contact with air. They should be stored separately from oxidants, alkalis, and ammonia, and avoid mixed storage. Use explosion-proof lighting and ventilation facilities. It is prohibited to use mechanical equipment and tools that are prone to sparks. The storage area should be equipped with emergency release equipment and suitable containment materials.

Synthesis method

1. Refining method: Use the complex formed between mercuric chloride and methyl sulfide for refining: add 1 mol of mercuric chloride to 1250 mL of ethanol, and then add 0.67 mol of methyl sulfide alcohol solution to this solution. The resulting solid is recrystallized to obtain complex crystals with a certain melting point and a structure of 2(CH3)2S·HgCl2. Dissolve 250 mL of concentrated hydrochloric acid in 780 mL of water, add 500 g of the refined complex, and heat to separate the methyl sulfide. After washing with water and drying with calcium chloride, the purity can reach 99.995% (mol).

Purpose

1. This product is a solvent and an intermediate for the production of dimethyl sulfoxide, methionine and pesticides. It can be used as a solvent for organic compounds, resins, inorganic compounds, polymerization reactions and cyanide reactions. Used as analytical reagent, polyacrylonitrile and other synthetic fiber spinning and hydraulic oil. It can also be used as an odorant for city gas, an industrial purifier, a paint release agent, a low-temperature preservative for batteries, a pesticide penetrant, etc. Used topically in hematological medicines, phytopathology and nutrition.

2. Used as solvent and catalyst for most inorganic substances. [26]

extended-reading:https://www.newtopchem.com/archives/44879
extended-reading:https://www.bdmaee.net/dabco-nem-niax-nem-jeffcat-nem/
extended-reading:https://www.morpholine.org/bismuth-2-ethylhexanoate/
extended-reading:https://www.morpholine.org/category/morpholine/page/3/
extended-reading:https://www.bdmaee.net/fascat4102-catalyst-monobutyl-tin-triisooctanoate-cas-23850-94-4/
extended-reading:https://www.newtopchem.com/archives/966
extended-reading:https://www.bdmaee.net/pc-cat-td33eg-catalyst/
extended-reading:https://www.bdmaee.net/spraying-composite-amine-catalyst/
extended-reading:https://www.newtopchem.com/archives/44080
extended-reading:https://www.newtopchem.com/archives/44776

L-glutamic acid

L-glutamic acid structural formula

Structural formula

Business number 0180
Molecular formula C5H9NO4
Molecular weight 147.13
label

(S)-2-Aminoglutaric acid,

glutamine,

(S)-2-Aminoglutaric acid,

L-Glutamic acid,

(S)-(+)-Glutamic acid,

Bitter remover,

intermediates,

Biochemical reagents

Numbering system

CAS number:56-86-0

MDL number:MFCD00002634

EINECS number:200-293-7

RTECS number:LZ9700000

BRN number:1723801

PubChem number:24901609

Physical property data

1. Characteristics: L-glutamic acid is white or colorless scaly crystals, slightly acidic. The racemate, DL-glutamic acid, is a colorless crystal.

2. Density (g/mL, 25/4℃): Racemic: 1.4601; Dextral, left-handed: 1.538.

3. Relative vapor density (g/mL, air=1): Undetermined

4. Melting point (ºC): 160

5. Boiling point (ºC, normal pressure): Undetermined

6. Boiling point (ºC, 5.2kPa): Undetermined

7. Refractive index: Undetermined

8 .         Flash point (ºC): Undetermined

9.       Specific rotation (º): [α]D22.4+31.4° (C=1.6mol/L hydrochloric acid)

10. Autoignition point or ignition temperature (ºC): Undetermined

11. Vapor pressure (kPa, 25ºC): Undetermined

12. Saturated vapor pressure (kPa, 60ºC ): Undetermined

13. Heat of combustion (KJ/mol): Undetermined

14. Critical temperature (ºC): Undetermined

15. Critical Pressure (KPa): Undetermined

16. Log value of oil-water (octanol/water) distribution coefficient: Undetermined

17. Explosion upper limit (%, V/V): Undetermined

18. Lower explosion limit (%, V/V): Undetermined

19. Solubility: racemateSlightly soluble in cold water, easily soluble in hot water, almost insoluble in ether, ethanol and acetone. The racemate is slightly soluble in ethanol, ether and petroleum ether.

Toxicological data

1. Acute toxicity: human oral TDLo: 71mg/kg; human intravenous TDLo: 117mg/kg; rat oral LD50: 36mg/kg; rabbit oral LD50: >2300mg/kg 2. Mutagenicity: sister chromatids exchangeTEST system:�Lymphocytes: 10mg/L

Ecological data

General remarks

Water hazard level 1 (German regulations) (self-assessment via list) This substance is slightly hazardous to water.

Do not allow undiluted or large amounts of product to come into contact with groundwater, waterways or sewage systems.

Do not discharge materials into the surrounding environment without government permission.

Molecular structure data

1. Molar refractive index: 31.83

2. Molar volume (cm3/mol): 104.3

3. Isotonic specific volume (90.2K ): 301.0

4. Surface tension (dyne/cm): 69.2

5. Polarizability (10-24cm3): 12.62

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): None

2. Number of hydrogen bond donors: 3

3. Number of hydrogen bond acceptors: 5

4. Number of rotatable chemical bonds: 4

5. Number of tautomers: none

6. Topological molecule polar surface area 101

7. Number of heavy atoms: 10

8. Surface charge: 0

9. Complexity: 145

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 1

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

1. This product is non-toxic.

2.Odorless, with a slightly special and sour taste.

3. Exist in tobacco leaves and smoke.
 

Storage method

1. This product should be sealed and stored in a cool, dark place.

2. Packed in plastic bags, nylon bags or plastic woven bags, net weight 25kg. During storage and transportation, attention should be paid to moisture-proof, sun-proof and low-temperature storage.

Synthesis method

1. Glutamic acid can be produced by protein hydrolysis and synthesis, but fermentation is currently the main method for producing glutamic acid. The carbon source for fermentation to produce glutamic acid is hydrolyzed sugar or molasses from potato, corn, tapioca starch, coconut tree starch and other starches. It can also be acetic acid, liquid paraffin (C16 paraffin is best) and other petrochemical products. The carbon source is Nutrients that constitute the carbon framework and energy in microbial cells and metabolites. Nitrogen sources are ammonium salts, urea, etc. Nitrogen is the main element that constitutes bacterial cell proteins and nucleic acids. Nitrogen is also the main element that constitutes the glutamic acid amino group of fermentation products. Other auxiliary raw materials are inorganic salts, vitamins, etc. For example, microorganisms require appropriate phosphorus concentration, magnesium is an inorganic activator that stimulates bacterial growth, potassium salt promotes acid production, and corn steep liquor provides biotin and organic nitrogen sources. Various accelerators and additives are also included. The producing bacteria are Brevibacterium, Corynebacterium pekinensis, etc. In a large fermentation tank, ferment with aeration and stirring at a temperature of 30-34°C and a pH>7-8. After 30-40 hours of fermentation, remove bacteria and extract glutamic acid from the fermentation liquid. After refining, the finished product is obtained. In the above process Extraction using isoelectric point method, ion exchange method, hydrochloride method, direct concentration method (when acetic acid is used as raw material), etc. can also be used. The product produced by fermentation method is L-glutamic acid, with a content of more than 98%. Each ton of glutamic acid consumes 4000kg of starch (80%) and 25kg of bacteria. The advantage of the synthesis method is that it does not consume food, but the production process requires high pressure (about 20MPa), high temperature (above 120°C), and uses toxic raw materials. The equipment investment is twice as high as that of the fermentation method, and the racemic glutamic acid obtained needs to be further processed. Split, the production process is complex. Calculated based on the production of 1 ton of 99% sodium glutamate (MSG), the synthesis method consumes 640kg of acrylonitrile. When the annual output is more than 5,000t, the production cost is close to that of the acidification method.
2.Fermentation method

3. Chemical synthesis

4.This product is mainly made from fermentation Produced by law. Molasses or starch is used as the raw material, Corynebacterium glutamicum or Pediococcus or Arthrobacter is used as the strain, and urea is used as the nitrogen source. Fermentation is carried out at 30 to 32°C. After the fermentation is completed, the bacteria are separated from the fermentation liquid. Use hydrochloric acid to adjust the pH value to 3.0, perform isoelectric point extraction, and obtain glutamic acid crystals after separation. The glutamic acid in the mother liquor is extracted with 732 ion exchange resin, crystallized, and dried to obtain the finished product.

5. Tobacco: BU, 22; FC, 21; L-isomer can be obtained from animal and plant proteins through hydrolysis, decolorization, concentration, and crystallization. It can also be produced from sugar or starch by fermentation. The racemate can be synthesized from acrylonitrile.

Purpose

1.L-Glutamic acid is mainly used in the production of MSG and spices, as well as as salt substitutes, nutritional supplements and biochemical reagents. L-glutamic acid itself can be used as a drug, participating in the metabolism of protein and sugar in the brain and promoting the oxidation process. It combines with ammonia in the body to form non-toxic glutyl glutamic acid.Amine can reduce blood ammonia and relieve symptoms of hepatic coma. It is mainly used to treat hepatic coma and severe liver insufficiency, but the efficacy is not very satisfactory; combined with anti-epileptic drugs, it can still treat petit mal epilepsy and psychomotor seizures. Racemic glutamate is used in the production of drugs and as biochemical reagents.

2.Usually not used alone, but in conjunction with phenolic and quinone antioxidants to obtain good synergistic effects.

3.Glutamic acid is used as a complexing agent for electroless plating.

extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/13.jpg
extended-reading:https://www.bdmaee.net/low-odor-catalyst-9727/
extended-reading:https://www.bdmaee.net/nt-cat-la-303-catalyst-cas1066-33-4-newtopchem/
extended-reading:https://www.newtopchem.com/archives/1677
extended-reading:https://www.bdmaee.net/niax-a-1-catalyst-bisdimethylaminoethyl-ether-momentive/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/-BL-13-Niax-catalyst-A-133-Niax-A-133.pdf
extended-reading:https://www.newtopchem.com/archives/45031
extended-reading:https://www.newtopchem.com/archives/799
extended-reading:https://www.newtopchem.com/archives/category/products/page/66
extended-reading:https://www.cyclohexylamine.net/cas111-41-1/

N-phenylsuccinimide

N-phenylsuccinimide structural formula

Structural formula

Business number 01TH
Molecular formula C10H9NO2
Molecular weight 175.18
label

N-Phthalosuccinimide,

1-Phenylsuccinimide

Numbering system

CAS number:83-25-0

MDL number:None

EINECS number:None

RTECS number:None

BRN number:None

PubChem ID:None

Physical property data

1. Physical property data


1. Character: Uncertain


2. Density (g/mL,25/4℃): Unsure


3. Relative vapor density (g/mL,AIR=1): Unsure


4. Melting point (ºC):1551


5. Boiling point (ºC,Normal pressure): Uncertain


6. Boiling point (ºC,5.2kPa): Unsure


7. Refractive index: Uncertain


8. Flash Point (ºC): Unsure


9. Specific optical rotation (º): Unsure


10. Autoignition point or ignition temperature (ºC): Unsure


11. Vapor pressure (kPa,25ºC): Unsure


12. Saturated vapor pressure (kPa, 60ºC): Unsure


13. Heat of combustion (KJ/mol): Unsure


14. Critical temperature (ºC): Unsure


15. Critical pressure (KPa): Unsure


16. Oil and water (octanol/Log value of the partition coefficient (water): Uncertain


17. Explosion limit (%,V/V): Unsure


18. Lower explosion limit (%,V/V): Unsure


19. Solubility: Uncertain.

Toxicological data

None

Ecological data

None

Molecular structure data


5. Molecular property data:


1. Molar refractive index: 46.71


2. Molar volume (m3/mol):136.9


3. isotonic ratio (90.2K):371.0


4. Surface Tension (dyne/cm):53.8


5. Polarizability10-24cm3):18.52


Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): None

2. Number of hydrogen bond donors: 0

3. Number of hydrogen bond acceptors: 2

4. Number of rotatable chemical bonds: 1

5. Number of tautomers: 3

6. Topological molecule polar surface area 37.4

7. Number of heavy atoms: 13

8. Surface charge: 0

9. Complexity: 215

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

None

Storage method

None

Synthesis method

None

Purpose

None

extended-reading:https://www.morpholine.org/category/morpholine/page/6/
extended-reading:https://www.newtopchem.com/archives/44661
extended-reading:https://www.morpholine.org/potassium-acetate-glycol-solution-polycat-46/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/31-4.jpg
extended-reading:https://www.cyclohexylamine.net/coordinated-thiol-methyltin-methyl-tin-mercaptide/
extended-reading:https://www.newtopchem.com/archives/40234
extended-reading:https://www.newtopchem.com/archives/44245
extended-reading:https://www.bdmaee.net/catalyst-a-300/
extended-reading:https://www.morpholine.org/category/morpholine/page/5389/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2020/06/70.jpg

L-Glutamine

L-glutamine structural formula

Structural formula

Business number 017Z
Molecular formula C5H10N2O3
Molecular weight 146.15
label

L-Glutamic acid-5-amide,

L-aminocarbonylbutyrine,

L-2-Aminoglutaric acid amide,

(S)-(+)-Glutamine,

L-Glutamic acid 5-amide,

amino acid drugs,

intermediates,

Biochemical reagents

Numbering system

CAS number:56-85-9

MDL number:MFCD00008044

EINECS number:200-292-1

RTECS number:MA2275100

BRN number:1723797

PubChem number:24277983

Physical property data

1. Properties: colorless needle-like crystals

2. Density (g/mL, 25/4℃): 1.321

3. Relative vapor density (g/mL , air=1): Undetermined

4. Melting point (ºC, decomposition): 185~186

5. Boiling point (ºC, normal pressure): 185

6. Boiling point (ºC, 5.2kPa): Undetermined

7. Refractive index: Undetermined

8. Flash point (ºC): Undetermined

9. Specific rotation (º): 32.25° (c=10, 2 N HCl).

10. Autoignition point or ignition temperature (ºC): Undetermined

11. Vapor pressure (kPa, 25ºC): Undetermined

12. Saturation Vapor pressure (kPa, 60ºC): Undetermined

13. Heat of combustion (KJ/mol): Undetermined

14. Critical temperature (ºC): Undetermined

15. Critical pressure (KPa): Undetermined

16. Log value of oil-water (octanol/water) partition coefficient: Undetermined

17. Explosion upper limit (% , V/V): Undetermined

18. Lower explosion limit (%, V/V): Undetermined

19. Solubility: soluble in water, almost insoluble in methanol, Ethanol, ether, benzene, acetone, ethyl acetate and chloroform, etc.

Toxicological data

1. Acute toxicity: Men’s oral TDLo: 27mg/kg/1W-I; Rat’s oral LD50: 7500mg/kg; Mice’s oral LD50: 21700mg/kg 2. Other multi-dose toxicity: Rat’s oral TDLo: 260mg/kg/30D-I 3. Mutagenicity: sister chromatids exchangeTEST system: human lymphocytes: 10mg/L

Ecological data

None

Molecular structure data

1. Molar refractive index:33.83

2. Molar volume (cm3/mol): 110.5

3. Isotonic specific volume (90.2K): 313.3

4. Surface tension (dyne/cm): 64.5

5. Polarizability (10-24cm3): 13.41

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): -3.1

2. Number of hydrogen bond donors: 3

3. Number of hydrogen bond acceptors: 4

4. Number of rotatable chemical bonds: 4

5. Number of tautomers: 2

6. Topological molecular polar surface area (TPSA): 106

7. Number of heavy atoms: 10

8. Surface charge: 0

9. Complexity: 146

10. Isotopes Number of atoms: 0

11. Determine the number of atomic stereocenters: 1

12. Uncertain number of atomic stereocenters: 0

13. Determine chemical bonds Number of stereocenters: 0

14. Number of stereocenters of uncertain chemical bonds: 0

15. Number of covalent bond units: 1

Properties and stability

1. Participate in the biosynthesis of glucosamine, a component of mucin in the digestive tract mucosa, thereby promoting the repair of mucosal epithelial tissue and helping to eliminate ulcer lesions. At the same time, it can promote brain metabolism and improve brain function through the blood-brain barrier. Like glutamate, it is an important nutrient for brain metabolism.

2. Exist in tobacco leaves and smoke.

3. Valuable in the field of immunity. After the body converts toxic ammonia into non-toxic glutamine, it is excreted through urine. Generally not involved in the composition of proteins.

Storage method

This product should be stored in a sealed, cool place and away from light.

Synthesis method

L-Glutamine widely exists in nature. For example, it is contained in free state in pumpkin and sunflower seedlings, and its N-ethyl compound (theanine) is contained in tea leaves. Although glutamine can be extracted from natural products, fermentation and synthesis are used for mass production. 1. Synthesis method: It is obtained by condensation, addition, salt formation and hydrolysis of L-glutamic acid-5-methyl ester ([1499-55-4]). Glutamic acid is esterified with methanol in the presence of concentrated sulfuric acid, and the resulting esterified liquid is added dropwise to the mixture of methanol and carbon disulfide. While adding dropwise, ammonia is circulated under cooling. After the esterification liquid is added dropwise, continue to pass ammonia, then add triethylamine, and leave it sealed at 30°C for 40 hours. After concentrating under reduced pressure to drive out ammonia, a concentrated solution of γ-methyl ester-L-glutamic acid-N-amino acid diammonium salt was obtained. Heat it to 40-45°C and add acetic acid. After stirring for 30 minutes, carbon disulfide was removed under reduced pressure, and a large amount of crystals precipitated. Then add an equal volume of methanol, place it at 0°C for 12 hours, and filter to obtain crude glutamine. The finished product is obtained through activated carbon decolorization and recrystallization. 2. Fermentation method uses glucose, acetic acid, and ethanol as the carbon source of the culture medium, and uses Brevibacterium flavum for fermentation. The yield based on glucose is 39g/L, and the yield is 39%.

2.Synthesis

3.Fermentation method

4. Extracted from the cell wall of fungi.

Purpose

1. This product is converted into sugar amine in the body, which serves as a precursor for mucin synthesis and can promote ulcer healing. It is mainly used as a peptic tract ulcer drug. In addition, it can also be used as a brain function improver and in the treatment of alcoholism.

2.It is used to improve the brain function of children with mental retardation and patients with mental disorders, alcoholism and epilepsy.

3. Nutritional supplements. In medicine, it is used to treat digestive organ ulcers (gastric ulcers, duodenal ulcers) and acute and chronic gastritis. It is also used as a brain function improver and to treat alcoholism.

extended-reading:https://www.newtopchem.com/archives/category/products/page/72
extended-reading:https://www.bdmaee.net/wp-content/uploads/2016/05/Lupragen-N205-MSDS.pdf
extended-reading:https://www.morpholine.org/3-morpholinopropylamine/
extended-reading:https://www.bdmaee.net/nt-cat-ncm-catalyst-cas110-18-9-newtopchem/
extended-reading:https://www.newtopchem.com/archives/44436
extended-reading:https://www.bdmaee.net/hard-foam-catalyst-smp/
extended-reading:https://www.newtopchem.com/archives/1734
extended-reading:https://www.newtopchem.com/archives/39408
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/51.jpg
extended-reading:https://www.bdmaee.net/dabco-tetn-catalyst-cas280-57-9-evonik-germany/

Formaldehyde oxime

Formaldehyde oxime structural formula

Structural formula

Business number 01J4
Molecular formula CH3NO
Molecular weight 45.04
label

Formyl oxime aqueous solution,

Formaldehydeoxime,

Formaldoximesolution,

Methyleneamine N-oxide,

N-Hydroxymethyleneimine

Numbering system

CAS number:75-17-2

MDL number:MFCD00058969

EINECS number:200-845-7

RTECS number:LP9720000

BRN number:None

PubChem ID:None

Physical property data

1. Characteristics: pure product with extremely strong refractive index Colorless liquid.


2. Density (g/mL,25/4℃):1035


3. Relative vapor density (g/mL,AIR=1): Unsure


4. Melting point (ºC): Unsure


5. Boiling point (ºC,Normal pressure): Uncertain


6. Boiling point (ºC,5.2kPa): Unsure


7. fold�Rate: Uncertain


8. Flash Point (ºC): 25


9. Specific optical rotation (º): Unsure


10. Autoignition point or ignition temperature (ºC): Unsure


11. Vapor pressure (kPa,25ºC): Unsure


12. Saturated vapor pressure (kPa,60ºC): Unsure


13. Heat of combustion (KJ/mol): Unsure


14. Critical temperature (ºC): Unsure


15. Critical pressure (KPa): Unsure


16. Oil and water (octanol/Log value of the partition coefficient (water): Uncertain


17. Explosion limit (%,V/V): Not sure


18. Lower explosion limit (%,V/V): Unsure


19. Solubility: soluble in water and acid. Can become a water-insoluble polymer at room temperature.




Toxicological data

1, teratogenicity


E. coli: 10umol/plate

Ecological data

None

Molecular structure data

1. Molar refractive index:10.86


2. Molar volume (m3/mol):48.4


3. isotonic specific volume (90.2K):110.8


4. Surface Tension (dyne/cm):27.4


5. Polarizability10-24cm3): 4.30

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): 1.5

2. Number of hydrogen bond donors: 1

3. Number of hydrogen bond acceptors: 2

4. Number of rotatable chemical bonds: 0

5. Number of tautomers: 2

6. Topological molecule polar surface area 32.6

7. Number of heavy atoms: 3

8. Surface charge: 0

9. Complexity: 12.3

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

None

Storage method

This product should be kept sealed. Not suitable for long-term storage.

Synthesis method

None

Purpose

Used for determination of manganese, copper, nickel, cobalt and iron, etc.

extended-reading:https://www.cyclohexylamine.net/non-emission-delayed-amine-catalyst-dabco-amine-catalyst/
extended-reading:https://www.bdmaee.net/33-iminobisnn-dimethylpropylamine/
extended-reading:https://www.bdmaee.net/pentamethyldipropylenetriamine-cas3855-32-1-nnnnn-pentamethyldipropylenetriamine/
extended-reading:https://www.bdmaee.net/jeffcat-td-33a-catalyst-cas107-16-9-huntsman/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2016/06/Jeffcat-ZF-22-MSDS.pdf
extended-reading:https://www.bdmaee.net/niax-ef-600-low-odor-balanced-tertiary-amine-catalyst-momentive/
extended-reading:https://www.newtopchem.com/archives/category/products/page/134
extended-reading:https://www.newtopchem.com/archives/811
extended-reading:https://www.cyclohexylamine.net/dabco-dc1-delayed-catalyst-dabco-dc1/
extended-reading:https://www.bdmaee.net/triethylenediamine-cas280-57-9-14-diazabicyclo2-2-2octane/

L-aspartic acid

L-aspartic acid structural formula

Structural formula

Business number 017Y
Molecular formula C4H7NO4
Molecular weight 133.1
label

L(+)-aminosuccinic acid,

L(+)-aminosuccinic acid,

L-aspartic acid,

L-aspartic acid,

(S)-(+)-Aminosuccinic acid,

(S)-Aspartic acid,

biochemical reagents,

Intermediates

Numbering system

CAS number:56-84-8

MDL number:MFCD00002616

EINECS number:200-291-6

RTECS number:CI9098500

BRN number:1723530

PubChem ID:None

Physical property data

1. Properties: Colorless orthorhombic leaf-shaped or rod-shaped crystals or crystalline powder, odorless. Often left-handed optical rotation.

2. Density (g/mL, 25/4℃): (d12.5/4) 1.514

3. Relative vapor density (g/mL, air=1) : Undetermined

4. Melting point (ºC): 270-271

5. Boiling point (ºC, normal pressure): Undetermined

6. Boiling point ( ºC, 5.2kPa): Not determined

7. Refractive index: Not determined

8. Flash point (ºC): Not determined

9. Specific optical rotation Degree (º): [a]20/D+25° (c=1.97, in 6mol/L hydrochloric acid).

10. Autoignition point or ignition temperature (ºC): Undetermined

11. Vapor pressure (kPa, 25ºC): Undetermined

12. Saturation Vapor pressure (kPa, 60ºC): Undetermined

13. Heat of combustion (KJ/mol): Undetermined

14. Critical temperature (ºC): Undetermined

15. Critical pressure (KPa): Undetermined

16. Log value of oil-water (octanol/water) partition coefficient: Undetermined

17. Explosion upper limit (% , V/V): Undetermined

18. Lower explosion limit (%, V/V): Undetermined

19. Solubility: soluble in hot water, acid, alkali and Salt solution, insoluble in ethanol and ether.

Toxicological data

1. Acute toxicity: mouse abdominal LC50: 6mg/kg

2. Other multiple dose toxicity: rat oral TDLo: 25079mg/kg/7D-C

3. Mutagenicity: sister chromatids exchangeTEST system: human lymphocytes: 10mg/L

Ecological data

None

Molecular structure data

1. Molar refractive index: 27.20

2. Molar volume (cm3/mol): 87.8

3. Isotonic specific volume (90.2K ): 261.3

4. Surface tension (dyne/cm): 78.2

5. Polarizability (10-24cm3): 10.78

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): None

2. Number of hydrogen bond donors: 3

3. Number of hydrogen bond acceptors: 5

4. Number of rotatable chemical bonds: 3

5. Number of tautomers: none

6. Topological molecule polar surface area 101

7. Number of heavy atoms: 9

8. Surface charge: 0

9. Complexity: 133

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 1

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

1. Stable properties under normal temperature and pressure.

2. It is a natural product and non-toxic.

3. Exist in tobacco leaves and smoke.

Storage method

Seal and store in a dry place.

Synthesis method

1. The preparation methods of L-aspartic acid include synthesis method and fermentation method. 1. The synthesis method mainly uses maleic acid or fumaric acid or their esters as raw materials, which are treated with ammonia under pressure and then hydrolyzed. It is relatively easy to synthesize racemic aspartic acid, but so far there is no ideal method to separate the racemate. 2. In the fermentation method, fumaric acid and ammonia are added under the action of enzymes to obtain products with high yields. This method only generates the left-handed form with high yield, so it is the main method for industrial production.

2. Obtained from fumaric acid and ammonia under the action of aspartase of Pseudomonas clover or Brevibacterium ammoniagenes.

3. Use maleic acid, fumaric acid or their esters as raw materials, and add ammonia under the action of enzymes. The reaction is as follows:

4. Tobacco: BU, 22; FC, 21.

Purpose

1. Biochemical and medical clinical research. It can be used as an ammonia detoxifier, liver function promoter, fatigue recovery agent and other pharmaceuticals. It can be used to make L-sodium aspartate food additives and additives for various refreshing drinks. It can also be used as biochemical reagents, culture media and organic synthesis intermediates.

2. Can be used as biochemical reagents, culture media and organic synthesis intermediates. In medicine, it is used as a component of heart disease drugs, liver function promoters, ammonia detoxifiers, fatigue relievers and amino acid infusions. It is also used as a preservative in the food industry.

3. Nutritional supplements. Add to various refreshing drinks. It is used medicinally as an ammonia detoxifier and liver function promoter. Used as nutritional additive in cosmetics.

4. L-aspartic acid is often used as a chiral substrate in diastereomeric alkylation reactions, and can be used as a chiral source to synthesize other chiral compounds.

Diastereoselective alkylation L-aspartate ester can be used in α– and β– Alkylation occurs (formula 1) [2], among which the β-alkylation reaction is the most widely used. During the β-alkylation reaction, the amino acid moiety has an important influence on the diastereoselectivity of the reaction. At the same time, β-dicarbonyl compounds can also be prepared through β-alkylation of cyclic derivatives of L-aspartic acid [3].

Synthesis of Chiral Compounds Using L-aspartic acid as the chiral source, a series of chiral compounds can be synthesized, such as using copper iodide After the action of sodium borohydride, etc., a multifunctional oxygen nitrogen heterocyclic compound (formula 2) can be obtained, which can further generate a quinoline compound [4].

Formation of amide bond L-aspartic acid, as an amino acid, is the same as other amino acids Amide compounds (formula 3)[5] can also be generated.

At the same time, you can also use L- Aspartic acid is used as the parent to realize the synthesis of cyclic lactam. For example, the synthesis of six-membered ring lactam (formula 4)[6]. The alkoxy group is also present in the product and therefore serves as an additional reaction site for further derivatization.

β Synthesis of amino acids (or amino acid esters) L-aspartic acid can generate β-amino acids or amino acid esters ( Formula 5)[10], this reaction realizes the conversion from natural amino acids to unnatural amino acids.

In addition, the L-aspartic acid molecule contains two carboxyl groups and one amino group, so it can be used as a multidentate ligand to coordinate with metal ions[7~9] Or form lactone compounds themselves[10,11].

extended-reading:https://www.bdmaee.net/organic-mercury-replacement-catalyst-nt-cat-e-at/
extended-reading:https://www.newtopchem.com/archives/206
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/spraying-composite-amine-catalyst-NT-CAT-PT1003-PT1003.pdf
extended-reading:https://www.newtopchem.com/archives/100
extended-reading:https://www.newtopchem.com/archives/823
extended-reading:https://www.newtopchem.com/archives/44108
extended-reading:https://www.bdmaee.net/cas-6711-48-4/
extended-reading:https://www.cyclohexylamine.net/k-15-catalyst-potassium-isooctanoate/
extended-reading:https://www.newtopchem.com/archives/767
extended-reading:https://www.newtopchem.com/archives/44131

2,5-Dimethyl-1-phenylpyrrole

2,5-dimethyl-1-phenylpyrrole structural formula

Structural formula

Business number 01TG
Molecular formula C12H13N
Molecular weight 171.24
label

1-phenyl-2,5-dimethylpyrrole,

2,5-Dimethyl-1-phenyl-1H-pyrrole,

1-Phenyl-2,5-dimethylpyrrole

Numbering system

CAS number:83-24-9

MDL number:MFCD00022464

EINECS number:201-461-2

RTECS number:None

BRN number:124370

PubChem ID:None

Physical property data

1. Physical property data


1. Character: Uncertain


2. Density (g/mL,25/4℃): Unsure


3. Relative vapor density (g/ mL,air=1 ): Unsure


4. Melting point (ºC):50-51


5. Boiling point (ºC,Normal pressure):155-160


6. Boiling point (ºC,5.2kPa): Unsure


7. Refractive index: Uncertain


8. Flash Point (ºC): Unsure


9. Specific optical rotation (º): Unsure


10. Autoignition point or ignition temperature (ºC): Unsure


11. Vapor pressure (kPa,25ºC): Unsure


12. Saturation vapor pressure (kPa,60ºC): Unsure


13. Heat of combustion (KJ/mol): Unsure


14. Critical temperature (ºC): Unsure


15. Critical pressure (KPa): Unsure


16. Oil and water (octanol/Log value of the partition coefficient (water): Uncertain


17. Explosion limit ( %,V/V): Unsure


18. Lower explosion limit (%,V/V): Unsure


19. Solubility: Uncertain.

Toxicological data

None

Ecological data

None

Molecular structure data

5. Molecular property data:


1. Molar refractive index: 56.33


2. Molar volume (m3/mol):177.7


3. Isotonic specific volume (90.2K ): 427.1


4. Surface Tension (dyne/cm):33.3


5. Polarizability10-24cm3):22.33

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): 3.1

2. Number of hydrogen bond donors: 0

3. Number of hydrogen bond acceptors: 0

4. Number of rotatable chemical bonds: 1

5. Number of tautomers: none

6. Topological molecule polar surface area 4.9

7. Number of heavy atoms: 13

8. Surface charge: 0

9. Complexity: 151

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

None

Storage method

None

Synthesis method

None

Purpose

None

extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/Butyl-tin-triisooctoate-CAS23850-94-4-Butyltin-Tris.pdf
extended-reading:https://www.newtopchem.com/archives/668
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/Efficient-trimerization-catalyst-for-aliphatic-and-alicyclic-isocyanates.pdf
extended-reading:https://www.bdmaee.net/dibutyl-tin-bis-1-thioglycerol/
extended-reading:https://www.newtopchem.com/archives/44794
extended-reading:https://www.bdmaee.net/dioctyl-tin-oxide-cas870-08-6-fascat-8201-catalyst/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/Dibutyltin-monooctyl-maleate-CAS25168-21-2-BT-58C.pdf
extended-reading:https://www.newtopchem.com/archives/1875
extended-reading:https://www.newtopchem.com/archives/814
extended-reading:https://www.bdmaee.net/teda-catalyst-triethylene-diamine-tosoh/

Methyl magnesium bromide

Methyl magnesium bromide structural formula

Structural formula

Business number 01J3
Molecular formula CH3MgBr
Molecular weight 119.24
label

Grignard reagent,

format reagent

Numbering system

CAS number:75-16-1

MDL number:MFCD00000041

EINECS number:200-844-1

RTECS number:OM3700000

BRN number:3535220

PubChem number:24858252

Physical property data

1. Properties: Solid

2. Density (g/mL, 20℃): 1.035

3. Relative vapor density (g/mL, air=1): Undetermined

4. Melting point (ºC): Undetermined

5. Boiling point (ºC, normal pressure): Undetermined

6. Boiling point (ºC, 5.2kPa): Not determined

7. Refractive index: Not determined

8. Flash point (ºF): 77

9. Specific rotation (º ): Undetermined

10. Autoignition point or ignition temperature (ºC): 160

11. Vapor pressure (kPa, 25ºC): Undetermined

12. Saturated vapor pressure (kPa, 60ºC) not determined:

13. Heat of combustion (KJ/mol): not determined

14. Critical temperature (ºC): not determined

15. Critical pressure (KPa): Undetermined

16. Log value of oil-water (octanol/water) partition coefficient: Undetermined

17. Explosion Upper limit (%, V/V): Undetermined

18. Lower explosion limit (%, V/V): Undetermined

19. Solubility: Reacts strongly with water, producing Combustible gas

Toxicological data

None

Ecological data

None

Molecular structure data

None

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): None

2. Number of hydrogen bond donors: 0

3. Number of hydrogen bond acceptors: 2

4. Number of rotatable chemical bonds: 0

5. Number of tautomers: none

6. Topological molecule polar surface area 0

7. Number of heavy atoms: 3

8. Surface charge: 0

9. Complexity: 4.8

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 3

Properties and stability

Reacts with water, oxides, acids, alkalis, and alcohols.

Sensitive to water, light and air.

Storage method

Store in a cool, dry, well-ventilated non-combustible warehouse. Keep away from fire and heat sources. The warehouse temperature should not exceed 28℃.The packaging must be sealed and must not come into contact with air. Keep away from light. Not suitable for large quantities or long-term storage. It should be stored separately from acids, flammables, combustibles, oxidants, oxygen, compressed air, etc. The lighting, ventilation and other facilities in the storage room should be explosion-proof, and the switches should be located outside the warehouse. Equipped with the appropriate variety and quantity of fire equipment. Fire and explosion prevention technical measures must be taken during tank storage. It is prohibited to use mechanical equipment and tools that are prone to sparks. When handling, load and unload with care to prevent damage to packaging and containers. Smoking, drinking, and eating are not allowed at the operation site.

Synthesis method

Use carbide tools to cut single crystal magnesium flakes with a purity of 99.999%, wash them several times with ether treated with lithium aluminum tetrahydride, and add a dry ice-acetone condenser tube. And in the reaction bottle directly connected to the ether distillation device. The device is repeatedly baked with gas lamps and filled with high-purity nitrogen several times. Add dry ice to the condenser tube, evaporate 50 mL of ether directly into the flask, and then introduce a small amount of ethyl bromide from the side tube installed near the bottom of the condenser tube. Bubbles are released and heat is released, proving that the reaction has begun. Thereafter, continue to pass in methyl bromide and steam into ether. Keep methyl bromide and ether at reflux without heating until the magnesium metal reacts completely. During this period, it is appropriate to keep the ether solution at about 300 mL. Remove the flask in the nitrogen flow and put it in the operating box with a stopper, filter it into the flask with a glass sand funnel, and cover it with a tetrafluoroethylene piston. A colorless and transparent methylmagnesium bromide solution was obtained. The ratio of the analytical values ​​of C:Mg:Br is 1.00:1.03:0.99.


Purpose

for organic synthesis

extended-reading:https://www.bdmaee.net/dibutylstanniumdichloride/
extended-reading:https://www.cyclohexylamine.net/tetrachloroethylene-perchloroethylene-cas127-18-4/
extended-reading:https://www.bdmaee.net/lupragen-n400-catalyst-trimethylhydroxyethyl-ethylene-diamine-basf/
extended-reading:https://www.bdmaee.net/jeffcat-zr-50-catalyst-cas67151-63-7-huntsman/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/115-10.jpg
extended-reading:https://www.bdmaee.net/cas-108-01-0/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/33-12.jpg
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/59.jpg
extended-reading:https://www.newtopchem.com/archives/43944
extended-reading:https://www.bdmaee.net/nt-cat-pc46-catalyst-cas127-08-2-newtopchem/

5-nitrosalicylicaldehyde

5-Nitrosalicylicaldehyde structural formula

Structural formula

Business number 02C8
Molecular formula C7H5NO4
Molecular weight 167.12
label

2-hydroxy-5-nitrobenzoyl,

2-Hydroxy5-nitrobenzaldehyae

Numbering system

CAS number:97-51-8

MDL number:MFCD00007337

EINECS number:202-587-0

RTECS number:CU6675000

BRN number:512565

PubChem number:24856642

Physical property data

  1. Appearance: light yellow or white powder.
  2. Density (g/mL, 20℃): Undetermined
  3. Relative vapor density (g/mL, air=1): Undetermined
  4. Melting point ( ºC): 125-128
  5. Boiling point (ºC, normal pressure): Undetermined
  6. Boiling point (ºC, KPa): Undetermined
  7. Refractive index: Undetermined Determined
  8. Flash point (ºC): Not determined
  9. Specific optical rotation (º): Not determined
  10. Autoignition point or ignition temperature (ºC): Not determined Determined
  11. Vapor pressure (mmHg, 20.2ºC): Undetermined
  12. Saturation vapor pressure (kPa, ºC): Undetermined
  13. Heat of combustion (KJ/mol ): Undetermined
  14. Critical temperature (ºC): Undetermined
  15. Critical pressure (KPa): Undetermined
  16. Oil-water (octanol/water) partition coefficient Log value: Undetermined
  17. Upper explosion limit (%, V/V): Undetermined
  18. Lower explosion limit (%, V/V): Undetermined
  19. Solubility: Not determined

Toxicological data

Acute toxicity: Rat oral LD50: 799mg/kg; Mouse oral LD50: 672mg/kg;

Ecological data

None

Molecular structure data

1. Molar refractive index: 41.43

2. Molar volume (cm3/mol): 111.3

3. Isotonic specific volume (90.2K ): 322.8

4. Surface tension (dyne/cm): 70.5

5. Polarizability (10-24cm3): 16.42

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): None

2. Number of hydrogen bond donors: 1

3. Number of hydrogen bond acceptors: 4

4. Number of rotatable chemical bonds: 1

5. Number of tautomers: 4

6. Topological molecule polar surface area 83.1

7. Number of heavy atoms: 12

8. Surface charge: 0

9. Complexity: 188

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

None

Storage method

None

Synthesis method

None

Purpose

Intermediates for organic synthesis of medicines, spices and dyes.

extended-reading:https://www.cyclohexylamine.net/nt-cat-fg1021-pinhole-elimination-agent/
extended-reading:https://www.bdmaee.net/dioctyltin-dilaurate/
extended-reading:https://www.newtopchem.com/archives/640
extended-reading:https://www.bdmaee.net/di-n-butyltin-oxide/
extended-reading:https://www.bdmaee.net/niax-b-4-tertiary-amine-catalyst-momentive/
extended-reading:https://www.bdmaee.net/dabco-rp208-high-efficiency-reaction-type-equilibrium-catalyst-reaction-type-equilibrium-catalyst/
extended-reading:https://www.bdmaee.net/dabco-mb20-catalyst-cas-68007-43-3-evonik-germany/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/12.jpg
extended-reading:https://www.newtopchem.com/archives/1902
extended-reading:https://www.bdmaee.net/u-cat-2030-catalyst-sanyo-japan/

carbon disulfide

Carbon disulfide structural formula

Structural formula

Business number 01J2
Molecular formula CS2
Molecular weight 76.14
label

carbon disulfide,

Dithoicarbonic anhydride,

Carbon bisulfide,

Aliphatic sulfur compounds

Numbering system

CAS number:75-15-0

MDL number:MFCD00011321

EINECS number:200-843-6

RTECS number:FF6650000

BRN number:1098293

PubChem number:24860298

Physical property data

1. Properties: colorless or light yellow transparent liquid with pungent odor and easy to evaporate. [1]

2. Melting point (℃): -111.5[2]

3. Boiling point (℃): 46.3[3]

4. Relative density (water = 1): 1.26[4]

5. Relative vapor Density (air=1): 2.63[5]

6. Saturated vapor pressure (kPa): 40 (20℃)[6]

7. Heat of combustion (kJ/mol): -1029.4[7]

8. Critical temperature (℃): 280[8]

9. Critical pressure (MPa): 7.39[9]

10. Octanol/water partition coefficient: 1.94 [10]

11. Flash point (℃): -30 (CC) [11]

12. Ignition temperature ( ℃): 90[12]

13. Explosion upper limit (%): 50.0[13]

14. Explosion Lower limit (%): 1.3[14]

15. Solubility: Insoluble in water, soluble in most organic solvents such as ethanol and ether. [15]

16. Refractive index (25ºC): 1.6241

17. Viscosity (mPa·s, 20ºC): 0.363

18. Ignition point (ºC): 100

19. Heat of evaporation (KJ/mol, 25ºC): 27.54

20. Heat of fusion (KJ/mol): 4.392

p>

21. Heat of formation (KJ/mol): 89.47

22. Specific heat capacity (KJ/(kg·K), 25ºC, constant pressure): 1.00

23 .Conductivity (S/m, 25ºC): 3.7×10-3

Toxicological data

1. Acute toxicity[16] LD50: 3188mg/kg (rat oral)

2. Irritation No data yet

3. Subacute and chronic toxicity[17] Rabbit inhalation 1.28g/m3, 5 months, causing chronic poisoning; 0.5~0.6g/m3, 6.5 months, causing an increase in serum cholesterol.

4. Mutagenicity [18] Microbial mutagenicity: Salmonella typhimurium 100μg/dish. Sister chromatid exchange: human lymphocytes 10200μg/L

5. Teratogenicity [19] Inhalation is the lowest in rats 1 to 22 days after pregnancy Toxic dose (TCLo) 10mg/m3 (8h) can cause eye and ear development malformations. Rats inhaled the lowest toxic dose (TCLo) 100 mg/m3 (8 hours) from 1 to 21 days after pregnancy, causing developmental malformations of the craniofacial region (including nose and tongue).

6. Others[20] Minimum toxic concentration for male inhalation (TCLo): 40mg/m3 (91 weeks ), causing changes in sperm production. The lowest toxic concentration for inhalation in rats (TCLo): 100mg/m3 (8h) (administered from 1st to 21st day of pregnancy), �� Started with fetal death and abnormal craniofacial development.

Ecological data

1. Ecotoxicity[21] LC50: 162~135mg/L (24~96h) (mosquito fish)

2. Biodegradability No data yet

3. Non-biodegradability[22] In the air, when hydroxyl radicals When the concentration is 5.00×105 pieces/cm3, the degradation half-life is 5.5d (theoretical).

4. Bioaccumulation [23] BCF: <6.1 (carp, contact concentration 50μg/L) <60 (carp, contact concentration 5μg/L)

Molecular structure data

1. Molar refractive index: 21.50

2. Molar volume (cm3/mol): 60.4

3. Isotonic specific volume (90.2K ): 143.8

4. Surface tension (dyne/cm): 32.0

5. Polarizability (10-24cm3): 8.52

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): 2.1

2. Number of hydrogen bond donors: 0

3. Number of hydrogen bond acceptors: 2

4. Number of rotatable chemical bonds: 0

5. Number of tautomers: none

6. Topological molecule polar surface area 64.2

7. Number of heavy atoms: 3

8. Surface charge: 0

9. Complexity: 18.3

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

1. Extremely flammable and can easily burn and explode when exposed to heat, sparks, flames or oxidants. Decomposes when heated to produce toxic sulfide fumes. Reacts violently with aluminum, zinc, potassium, fluorine, chlorine, azide, etc., posing a risk of combustion and explosion. High-speed impact and friction can cause combustion and explosion due to static spark discharge.

2. Chemical properties: Stable to acids, and does not interact with concentrated sulfuric acid and concentrated nitric acid at room temperature. But it is unstable to alkali and reacts with potassium hydroxide to generate potassium thiosulfate and potassium carbonate. It reacts with sodium alcohol to form xanthate; it gradually oxidizes in the air, becoming yellow and smelly. It decomposes under the influence of sunlight; at low temperatures, it reacts with water to form crystals with the structure of 2CS2·H2O. It reacts with chlorine under appropriate conditions to produce carbon tetrachloride and sulfur chloride.

3. The high-concentration vapor of this product has an anesthetic effect. The concentration is 0.1% to 0.3%. Inhalation can cause death in 1 hour. Even if it is lower than the lethal dose, it will leave sequelae. Long-term inhalation (3 months) 160 When ×10-6 or more, neuritis will occur after 1 to 2 years. The maximum allowable concentration in the workplace is 60mg/m3. This product is toxic and irritating. Closed operation, local exhaust. Operators must undergo special training and strictly abide by operating procedures. It is recommended that operators wear self-priming filter gas masks (half masks), chemical safety glasses, anti-static overalls, and rubber oil-resistant gloves. Keep away from fire and heat sources. Smoking is strictly prohibited in the workplace. Use explosion-proof ventilation systems and equipment. Prevent vapors from leaking into the workplace air. Avoid contact with oxidants, amines, and alkali metals. The flow rate should be controlled during filling, and a grounding device should be installed to prevent the accumulation of static electricity. Equipped with corresponding varieties and quantities of fire-fighting equipment and leakage emergency treatment equipment. Empty containers may be harmful residues.

4. Due to its low boiling point, strong volatility and high toxicity, it is easily dispersed in the air during production and use, causing serious pollution and harm to the environment and human body. Carbon disulfide is a poison that damages nerves and blood vessels. When people are exposed to high concentrations of carbon disulfide, it has a paralyzing effect. If it lasts for a long time, the respiratory center may be paralyzed, resulting in loss of consciousness and death. At high concentrations, it can also be absorbed by human skin.

5. This product is a gas anesthetic. Its vapor has a strong irritating effect on the skin and eyes, and can easily cause dermatitis and burns. Acute poisoning begins to cause delirium, and later anesthesia, loss of consciousness, and even death from respiratory failure. Long-term inhalation of its vapor can cause symptoms such as weak stomach, insomnia, fatigue, loss of appetite, headache, dizziness, abnormal sensation, drop in blood pressure, trembling, stiffness of hands and feet, slow movement, salivation, sweating, memory loss and other symptoms. Mainly damages the nervous and cardiovascular systems. When the vapor concentration is 12440 mg/m3, death will occur in 30 to 60 minutes. TJ 36-79 stipulates that the maximum allowable concentration in workshop air is 10 mg/m3.

6. Stability[24] Stable

7. Incompatible substances[25] Strong oxidizing agent, aluminum

8. Conditions to avoid contact[26] Heating

9. Polymerization hazard[27] No polymerization

10. Decomposition products[28] Hydrogen chloride

Storage method

1. Storage precautions[29] It is easily volatile at room temperature, so the surface of the container can be covered with water. Store in a cool, ventilated warehouse. Keep away from fire and heat sources. The storage temperature should not exceed 29°C. Keep container tightly sealed. They should be stored separately from oxidants, amines, alkali metals, and food chemicals, and avoid mixed storage. Use explosion-proof lighting and ventilation facilities. It is prohibited to use mechanical equipment and tools that are prone to sparks. The storage area should be equipped with leakage emergency treatment equipmentequipment and suitable containment materials.

2. This product is packed in glass bottles and metal barrels (aluminum barrels, iron barrels, storage tanks) and protected by wooden boxes, and must be stored in In a warehouse constructed of non-combustible materials and with ground ventilation facilities, keep away from fire sources and avoid sunlight. In summer, cooling measures should be taken to keep storage below 17°C. There should be no electrical equipment or heating facilities near the warehouse, and lightning or static electricity must be prevented from igniting fires. The liquid level of the storage tank should be sealed with inert gas. Store and transport according to regulations for flammable materials.

Synthesis method

1. Methane sulfur method: solid sulfur is heated and melted into liquid, and then purified with activated clay. Natural gas purification treatment uses light diesel to adsorb fractions above C2 and separate pure methane gas. After the natural gas and sulfur vapor are heated, they can be fully mixed and heated to 650°C, and then sent to the reactor for reaction. The pressurized partial condensation method is used to separate carbon disulfide and hydrogen sulfide, and carbon disulfide is obtained after distillation. The reaction formula is as follows:

2. Charcoal sulfur method : According to different heating methods, it can be divided into two categories: external heating iron steamer method and internal heating electric furnace method. Generally, the three-phase electric furnace method is used. In the electric furnace method, charcoal is directly roasted at 800°C to remove moisture and organic matter and then added to the electric furnace intermittently. Molten sulfur is continuously added to the electric furnace to react with the red charcoal at about 1000°C. The generated carbon disulfide is desulfurized and condensed to obtain a crude product, which is then refined. Distillation and condensation to obtain carbon disulfide finished product. The reaction formula is as follows:

3. Commercially available Carbon disulfide is synthesized by heating charcoal and sulfur to 850 to 950°C. As a reagent, it can meet general requirements, but when the required purity is high, the following methods need to be used to remove the impurities contained in it. These impurities are hydrogen sulfide, sulfurous acid, sulfuric acid, organic sulfides, water and sulfur. Add 100 to 200 g of mercury and an appropriate amount of phosphorus pentoxide to 500 mL of commercially available carbon disulfide, shake for about 1 hour, filter, fractionate the filtrate away from light, discard the high and low fractions, and collect the middle fraction. The collected fractions are remixed with mercury and phosphorus pentoxide, shaken, and fractionated. Repeat this operation until the content of harmful impurities reaches the standard.

Refining method: Impurities contained include sulfur, sulfide and water. There are several refining methods: ① Distill 3 times with a glass still. ② Dry with calcium chloride and then fractionate multiple times. ③ Shake with mercury to remove sulfide, then dry and fractionate with phosphorus pentoxide. ④ Add 5g of crushed potassium permanganate to 1L of carbon disulfide and shake it thoroughly until the hydrogen sulfide is completely removed and then place it. After separation, add a small amount of mercury and shake it to remove the sulfur until the interface does not turn black further. Finally, add 5g of mercury sulfate to each 1L of carbon disulfide and shake to eliminate the odor. After separation, it is dried with calcium chloride and fractionated.

4. Use industrial carbon disulfide as raw material, add anhydrous copper sulfate (25-37.5g copper sulfate is required for each carbon disulfide), stir thoroughly until the black powder disappears and there is no unpleasant smell, immediately Filter to remove insoluble impurities, then add anhydrous copper sulfate to the filtrate, distill, and collect the fractions according to product specifications, which is the pure product.

Purpose

1. Used in the manufacture of viscose fiber, cellophane, xanthate, thiocyanate and carbon tetrachloride. Xanthate produced from carbon disulfide is used as an ore flotation agent in the metallurgical industry. Used in the production of agricultural pesticides. When vulcanized in the rubber industry, it can be used as a solvent for sulfur chloride. Use it to make anti-corrosion agents for equipment and pipelines in ammonia treatment systems. It is also a solvent used for testing primary amines, secondary amines and α-amino acids, measuring refractive index, and chromatographic analysis. It is also used to extract oil from linseed, olive fruit, animal bones, leather and wool. Used as an accelerator in aviation. It is also used as a solvent for grease, wax, paint, camphor, resin, rubber, sulfur, phosphorus, iodine, etc., as a degreaser for wool, as an agricultural pesticide, as a soil disinfectant, as a stain remover for clothes, etc. In analysis, it is used for the determination of primary amines, secondary amines and α-amino acids and as a solvent for infrared spectroscopy.

2. Carbon disulfide is widely used in metallurgy, pesticides, rubber, viscose fiber and other industrial fields. It has good penetrability and is generally used as a mixture with non-combustible ingredients when fumigating grain. Fumigation of dry seeds with carbon disulfide does not reduce seed viability. For grains such as wheat, barley, corn, rice, etc., fumigation at 250g/m3 for 24 hours will not affect germination. Gaseous carbon disulfide will seriously damage or kill growing plants or seedlings. Water-diluted carbon disulfide emulsion treats the soil around the roots of evergreen trees and deciduous seedlings, and can effectively control a variety of underground pests. Due to the flammable and explosive properties of carbon disulfide, this agent is used less and less in modern fumigations.

3. Mainly used as raw material for manufacturing viscose fiber and cellophane. Xanthate produced from carbon disulfide is used as an ore flotation agent in the metallurgical industry. Used in the production of agricultural pesticides. When vulcanized in the rubber industry, it can be used as a solvent for sulfur chloride. It is also a solvent used for testing primary amines, secondary amines and α-amino acids, measuring refractive index, and chromatographic analysis. It is also used to extract oil from linseed, olive fruit, animal bones, leather and wool. Used as aerospace accelerator.

4. Used as analytical reagents, solvents, viscose fibersVJ wool degreaser. Also used for refractive index determination.

5. Used in the manufacture of rayon, pesticides, accelerator M, accelerator D, and also used as solvents. [30]

extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/33-7.jpg
extended-reading:https://www.newtopchem.com/archives/1867
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/-BL-13-Niax-catalyst-A-133-Niax-A-133.pdf
extended-reading:https://www.newtopchem.com/archives/44762
extended-reading:https://www.newtopchem.com/archives/44402
extended-reading:https://www.bdmaee.net/catalyst-9727/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/bis3-dimethylaminopropyl-N-CAS-33329-35-0-Tris3-dimethylaminopropylamine.pdf
extended-reading:https://www.cyclohexylamine.net/cas-23850-94-4-butyltin-tris2-ethylhexanoate/
extended-reading:https://www.newtopchem.com/archives/44536
extended-reading:https://www.cyclohexylamine.net/aeea/

BDMAEE:Bis (2-Dimethylaminoethyl) Ether

CAS NO:3033-62-3

China supplier

For more information, please contact the following email:

Email:sales@newtopchem.com

Email:service@newtopchem.com

Email:technical@newtopchem.com

BDMAEE Manufacture !