glycerin

Glycerol structural formula

Structural formula

Business number 017W
Molecular formula C3H8O3
Molecular weight 92.09
label

Glycerol,

glycol,

trihydroxypropane,

1,2,3-propanetriol,

Glycerol,

Glycol alcohol,

1,2,3-Propanetriol,

Trihydroxypropane,

automobile and aircraft fuel,

antifreeze,

hygroscopic agent,

lubricants,

Solvents and co-solvents,

Aquasorb,

carrier solvent,

thickener,

plasticizer,

vehicle,

alcohol compounds

Numbering system

CAS number:56-81-5

MDL number:MFCD00004722

EINECS number:200-289-5

RTECS number:MA8050000

BRN number:635685

PubChem number:24895092

Physical property data

1. Properties: Colorless and odorless viscous liquid with sweet taste.

2. Boiling point (ºC, 101.3kPa): 290, 182 (2666pa)

3. Melting point (ºC, pouring point): 20

4. Relative density (g/mL, 15/15ºC): 1.26526

5. Relative density (g/mL, 20/20ºC): 1.2613

6. Relative density (g/mL, 25/25ºC): 1.26170

7. Relative vapor density (g/mL, air=1): 3.1

8. Refractive index (15ºC): 1.47547

9. Refractive index (n20ºC): 1.4746

10. Refractive index (n25ºC): 1.4730

11. Viscosity (mPa·s, 20ºC): 243

12. Viscosity (mPa·s, 25ºC): 56.0

13. Viscosity (mPa·s, 30ºC): 18

14. Viscosity (mPa·s, 50ºC): 18

15. Flash point (ºC, closed): 177

16. Flash point (ºC): 523 (on Pt); 429 (on glass)

17. Heat of evaporation (KJ/mol, 55ºC): 88.17

18. Heat of evaporation (KJ/mol, b.p.): 61.09

19.Heat of formation (KJ/mol, 15ºC, liquid): 669.05

20. Heat of combustion (KJ/mol, 25ºC, liquid): 1656.42

21. Specific heat capacity (KJ/(kg·K), 15ºC): 2.46

22. Conductivity (S/m, 20ºC): 1.0×10-8

23. Thermal conductivity (W/(m·K)): 0.29

24. Vapor pressure (kPa, 125.5ºC): 0.13

25. Body expansion coefficient (K-1): 0.000615

26. Solubility: able to absorb hydrogen sulfide, hydrocyanic acid, and sulfur dioxide. It is miscible with water and ethanol. One part of this product can be dissolved in 11 parts of ethyl acetate and about 500 parts of ether. It is insoluble in benzene, carbon disulfide, chloroform, carbon tetrachloride, petroleum ether, chloroform and oil. It is easily dehydrated and loses water to form diglycerol and polyglycerol. Oxidation produces glyceraldehyde and glyceric acid, etc. Solidifies at 0°C to form flashing rhombic crystals. Polymerization occurs at temperatures around 150°C. Incompatible with anhydrous acetic anhydride, potassium permanganate, strong acids, corrosives, fatty amines, isocyanates, and oxidants.

27. Relative density (20℃, 4℃): 1.2613

28. Relative density (25℃, 4℃): 1.255130

29. Critical temperature (ºC): 576.85

30. Critical pressure (MPa): 7.5

31. Eccentricity factor: 1.320

32. Solubility parameter (J·cm-3)0.5: 34.315

33. van der Waals area (cm2·mol-1): 7.650×1010

34. van der Waals volume (cm3·mol-1): 51.360

Toxicological data

  1. Toxicity Classification Poisoning
  2. Acute toxicity: Oral – rat LD50: 26000 mg/kg; Oral – mouse LC50: 4090 mg/kg.
  3. Irritation data: Skin – Rabbit 500 mg/24 hours Mild; Eyes – Rabbit 126 mg Mild.
  4. It is non-toxic to humans when consumed. When used as a solvent, it can be oxidized into acrolein and become irritating. The LC50 of intravenous injection in mice is 7.56g/kg, and the maximum allowable concentration in the workplace is 10mg/m3.
  5. Rat oral LD50: 20ml/kg; intravenous LD50: 4.4ml/kg. Store in a cool, dry place.

Ecological data

Has certain harm to water bodies. No pollution to the environment.

Molecular structure data

1. Molar refractive index: 20.51

2. Molar volume (cm3/mol): 70.9

3. Isotonic specific volume (90.2K): 199.0

4. Surface tension (dyne/cm): 61.9

5. Polarizability (10-24cm3): 8.13

Compute chemical data

1. Hydrophobic parameter calculation reference value (XlogP): None

2. Number of hydrogen bond donors: 3

3. Number of hydrogen bond acceptors: 3

4. Number of rotatable chemical bonds: 2

5. Number of tautomers: None

6. Topological molecular polar surface area 60.7

7. Number of heavy atoms: 6

8. Surface charge: 0

9. Complexity: 25.2

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Number of uncertain atomic stereocenters: 0

13. Determine the number of stereocenters of chemical bonds: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

1. Colorless, transparent, odorless, viscous liquid with sweet taste and hygroscopicity. It is miscible with water, alcohols, amines and phenols in any proportion, and the aqueous solution is neutral. Soluble in 11 times of ethyl acetate and about 500 times of diethyl ether. Insoluble in benzene, chloroform, carbon tetrachloride, carbon disulfide, petroleum ether, oils, and long-chain fatty alcohols. It is flammable and can cause combustion and explosion when exposed to strong oxidants such as chromium dioxide and potassium chlorate. It is also a good solvent for many inorganic salts and gases. It is non-corrosive to metals and can be oxidized to acrolein when used as a solvent.

Chemical properties: esterification reaction with acid, such as esterification with phthalic acid to form alkyd resin. Transesterification occurs with esters. Reacts with hydrogen chloride to form chlorohydrins. There are two ways to dehydrate glycerol: intermolecular dehydration to obtain diglycerol and polyglycerol; intramolecular dehydration to obtain acrolein. Glycerol reacts with alkali to form alcoholate. Reacts with aldehydes and ketones to form acetals and ketals. Oxidation with dilute nitric acid produces glyceraldehyde and dihydroxyacetone; oxidation with periodic acid produces formic acid and formaldehyde. Contact with strong oxidants such as chromic anhydride, potassium chlorate or potassium permanganate can cause combustion or explosion. Glycerol can also play a role in nitration and acetylation.

2. Non-toxic. It is harmless even if the total amount of the dilute solution reaches 100g, and it is hydrolyzed and oxidized in the body to become a nutrient source. In animal experiments, it has the same anesthetic effect as alcohol when consumed in extremely large amounts.

3. Exists in flue-cured tobacco leaves, burley tobacco leaves, oriental tobacco leaves and smoke.

4. Naturally found in tobacco, beer, wine, and cocoa.

StorageHow to save

1. Store in a clean and dry place and pay attention to sealed storage. Pay attention to moisture, water and heat protection, and it is strictly forbidden to mix with strong oxidants. Can be stored in tin-plated or stainless steel containers.

2. Packed in aluminum drums or galvanized iron drums or stored in phenolic resin-lined storage tanks. During storage and transportation, it must be protected from moisture, heat and water. It is prohibited to put glycerol together with strong oxidants (such as nitric acid, potassium permanganate, etc.). Store and transport according to general regulations on flammable chemicals.

Synthesis method

The industrial production methods of glycerol can be divided into two categories: the method using natural oils as raw materials, and the resulting glycerin is commonly known as natural glycerin; the synthesis method using propylene as raw materials, the obtained glycerin Commonly known as synthetic glycerol.

1. Production of natural glycerin. Before 1984, glycerin was all recovered from the by-products of animal and vegetable fat soap making. Until now, natural oils and fats are still the main raw materials for the production of glycerol. About 42% of the natural glycerin in the base comes from soap by-products, and 58% comes from fatty acid production. Saponification reaction of fats and oils in soap making industry. The saponification reaction product is divided into two layers: the upper layer mainly contains sodium salts of fatty acids (soap) and a small amount of glycerol, and the lower layer is waste alkali liquid, which is a dilute glycerol solution containing salts and sodium hydroxide, generally containing 9-16% of glycerol and inorganic salts. 8-20%. Grease reaction. Glycerin water (also called sweet water) obtained by hydrolysis of oil and fat has a higher glycerin content than soapmaking waste liquid, about 14-20%, and inorganic salts of 0-0.2%. In recent years, continuous high-pressure hydrolysis has been widely used. The reaction does not use a catalyst. The resulting sweet water generally does not contain inorganic acid, and the purification method is simpler than that of spent alkali. Whether it is soap-making waste liquid or glycerol water obtained by hydrolysis of oil, the amount of glycerol is not high, and they all contain various impurities. The production process of natural glycerin includes purification and concentration to obtain crude glycerol, as well as distillation, decolorization, and Deodorization refining process. This process is described in detail in some books and periodicals.

2. Production of synthetic glycerol The various pathways for synthesizing glycerin from propylene can be summarized into two major categories, namely chlorination and oxidation. Propylene chlorination method and propylene irregular acetic acid oxidation method are still used in industry.

(1) Propylene chlorination method This is the most important production method in synthetic glycerol. It includes four steps, namely high-temperature chlorination of propylene, hypochlorous acidification of chloropropene, Saponification of dichloropropanol and hydrolysis of epichlorohydrin. The hydrolysis of epichlorohydrin to glycerin is carried out at 150°C and 1.37MPa carbon dioxide pressure in an aqueous solution of 10% hydrogen oxide and 1% sodium carbonate to generate a glycerin aqueous solution containing sodium chloride with a glycerol content of 5-20%. After concentration, desalination and distillation, glycerin with a purity of more than 98% is obtained.

(2) Propylene peracetic acid oxidation method Propylene and peracetic acid react to synthesize propylene oxide, and propylene oxide isomerizes into alkene and propanol. The latter reacts with peracetic acid to generate glycidol (glycidol), which is finally hydrolyzed to glycerol. The production of peracetic acid does not require a catalyst. Acetaldehyde is oxidized with oxygen in the gas phase. Under normal pressure, 150-160°C, and a contact time of 24 seconds, the acetaldehyde conversion rate is 11% and the peracetic acid selectivity is 83%. The above-mentioned last two steps of reaction are carried out continuously in the reactive distillation tower with special structure. After the raw materials allyl alcohol and ethyl acetate solution containing peracetic acid are sent into the tower, the tower still is controlled at 60-70°C and 13-20kPa. The ethyl acetate solvent and water are evaporated from the top of the tower, and a glycerol aqueous solution is obtained from the tower still. This method has high selectivity and yield, uses peracetic acid as the oxidant, does not require a catalyst, has a fast reaction speed, and simplifies the process. The production of 1 ton of glycerin consumes 1.001t of allyl alcohol, 1.184t of peracetic acid, and 0.947t of acetic acid as a by-product. At present, the output of natural glycerin and synthetic glycerin accounts for almost 50% each, while the propylene chlorination method accounts for about 80% of Hezhi’s glycerol output. my country’s natural glycerin accounts for more than 90% of the total output.

3. Dilute the industrial grade glycerin with 1/2 the amount of distilled water. After stirring thoroughly, add activated carbon and heat to 60~70℃ for decolorization, and then vacuum Filter to ensure the filtrate is clear and transparent. Control the dripping speed, and add the filtrate into the column of the pre-processed mixture of 732 strong acid cation resin and 717 strong alkali anion and cation resin to adsorb and remove electrolytes and non-electrolyte impurities such as aldehydes, pigments, and esters in glycerol.
The glycerin solution after removing impurities is distilled under reduced pressure, and the vacuum degree is controlled to be above 93326Pa. The kettle temperature is between 106 and 108°C. After steaming out most of the water, the kettle temperature is raised to 120°C for rapid dehydration. When no water comes out, the heating is stopped. The materials in the kettle are the finished products.

Purpose

1. Glycerol is an important organic chemical raw material and is widely used in many sectors of the national economy. It is an excellent hygroscopic agent, antifreeze, lubricant, solvent and co-solvent. It is an important raw material for the production of polyester, explosives, medicine, etc. In the food industry, it can be used as a water-retaining agent (for bread and cakes), a carrier solvent (for spices, pigments, and non-water-soluble preservatives), a thickener (for beverages, wine preparation, etc.), and a plasticizer. Agent(�(used in candies, desserts, meat products, etc.); can be used as a color carrier in colored foods. Glycerin is also used as a lubricant in food processing and packaging machinery. Commonly used as softeners, viscosity improvers and solvents in pharmaceutical and cosmetic manufacturing. Among polymer materials, glycerol is often used as a raw material for the production of polyurethane foam, polyether, etc. It is an important raw material for the production of alkyd resin and celluloid, and is especially used in large quantities in the manufacture of alkyd resin paint. It is also widely used in tobacco industry, ceramic industry, leather industry, wood industry and photography. and used as automobile and aircraft fuel and as antifreeze in oil fields.

2. Used as analytical reagent and gas chromatography stationary solution. Measure boron complexing agent. Used as solvents, lubricants, in the formulation of cosmetics and in the pharmaceutical industry.

3. Used as a toughening agent for polyvinyl alcohol and starch adhesives, and also used in the manufacture of unsaturated polyester resin, alkyd resin, polyester, glycerin epoxy resin, etc. As an important organic chemical raw material, it is widely used in military, food, pharmaceutical, daily chemical and other industries, with more than 1,700 uses. Defense industry: Nitroglycerin produced by the reaction of glycerin and nitric acid is an extremely sensitive explosive. Glycerin is also used as an antifreeze in aircraft fuel. Food industry: used as solvent, hygroscopic agent and color vehicle. In flavored and colored foods, glycerin helps shape the food due to its viscosity. In the rapid freezing of food, glycerin can be used as a heat transfer medium in direct contact with the food. Glycerin is also a lubricant for food processing and packaging machinery. In addition, the application of polyglycerol and polyglyceryl esters in the manufacture of crispy foods and margarine is increasing year by year. Pharmaceutical industry: used as softener, viscosity improver and solvent. Glycerol can be used as a sedative, nitroglycerin is a vasodilator in coronary spasm, etc. Daily chemical industry: additives for cosmetics, toothpaste, food flavors, anti-drying agent for tobacco. Plastic industry: used as starting agent in polyurethane foam production. Textile printing and dyeing industry: used as lubricant, moisture absorbent, anti-shrink and anti-wrinkle treatment agent, diffusing agent, penetrating agent, etc. In addition, glycerol is widely used in ceramics, photography, leather and wood industries.

4. This product is used in stainless steel polishing solution, trivalent chromium plating solution and chemical copper plating, etc.
In cyanide zinc plating, it can make the coating smooth and delicate, improve cathodic polarization, and also make the coating bright. Glycerol and triethanolamine can be used for bright nickel plating at room temperature in a certain proportion.

extended-reading:https://www.bdmaee.net/spraying-catalyst-pt1003/
extended-reading:https://www.cyclohexylamine.net/tetrachloroethylene-perchloroethylene-cas127-18-4/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2023/02/2.jpg
extended-reading:https://www.cyclohexylamine.net/ethyl-4-bromobutyrate/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2021/05/2-6.jpg
extended-reading:https://www.newtopchem.com/archives/category/products/page/152
extended-reading:https://www.cyclohexylamine.net/category/product/page/13/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/33-9.jpg
extended-reading:https://www.newtopchem.com/archives/674
extended-reading:https://www.bdmaee.net/niax-b-18-tertiary-amine-catalyst-momentive/

methylene chloride

Dichloromethane structural formula

Structural formula

Business number 01HZ
Molecular formula CH2Cl2
Molecular weight 85
label

dichloromethylene,

methylene chloride,

Methylene dichloride,

Methylene dichloride,

DCM

Numbering system

CAS number:75-09-2

MDL number:MFCD00000881

EINECS number:200-838-9

RTECS number:PA8050000

BRN number:1730800

PubChem number:24856423

Physical property data

1. Properties: colorless and transparent liquid with aromatic odor. [1]

2. Melting point (℃): -95[2]

3. Boiling point (℃): 39.8[3]

4. Relative density (water = 1): 1.33[4]

5. Relative vapor Density (air=1): 2.93[5]

6. Saturated vapor pressure (kPa): 46.5 (20℃)[6]

7. Heat of combustion (kJ/mol): -604.9[7]

8. Critical temperature (℃): 237[8]

9. Critical pressure (MPa): 6.08[9]

10. Octanol/water partition coefficient: 1.25 [10]

11. Flash point (℃): -4[11]

12. Ignition temperature (℃): 556[12]

13. Explosion upper limit (%): 22[13]

14. Explosion lower limit (% ): 14[14]

15. Solubility: Slightly soluble in water, soluble in ethanol and ether. [15]

16. Viscosity (mPa·s, 20ºC): 0.425

17. Relative density (25℃, 4℃): 1.3162

18. Ignition point (ºC): 662

19. Heat of evaporation (KJ/mol, b.p.): 329.5

20. Heat of fusion (KJ/mol) : 4.187

21. Heat of formation (KJ/mol, 25ºC, liquid): 121.54

22. Heat of combustion (KJ/kg, 25ºC, liquid): 558.27

23. Specific heat capacity (KJ/(kg·K), 20ºC): 0.992

24. Electrical conductivity (S/m, 25ºC): 4.3×10-11

25. Vapor pressure (kPa, 0ºC): 19.7

26. Vapor pressure (kPa, 10ºC): 30.6

27. Vapor pressure (kPa, 20ºC): 46.5

28. Vapor pressure (kPa, 30ºC): 68.2

29. Vapor pressure (kPa, 35ºC): 80.00

30. Body Expansion coefficient (K-1, 10~40ºC, liquid): 0.00137

31. Refractive index at room temperature (n25): 1.4213

32. Eccentricity factor: 0.192

33. Lennard-Jones parameter (A): 9.951

34. Lennard-Jones parameter (K): 150.5

35. Solubility parameter (J·cm-3)0.5: 20.378

36.van der Waals area (cm 2·mol-1): 4.990×109

37. van der Waals volume (cm3 sup>·mol-1): 34.710

38. The gas phase standard claims heat (enthalpy) (kJ·mol-1): -95.4

39. Gas phase standard entropy (J·mol-1·K-1): 270.44

40. Gas phase standard generation Free energy (kJ·mol-1): -68.8

41. Gas phase standard hot melt (J·mol-1·K -1): 50.88

42. Liquid phase standard claims heat (enthalpy) (kJ·mol-1): -124.26

43. Liquid phase standard entropy (J·mol-1·K-1): 178.7

44. Liquid phase standard free energy of formation (kJ·mol-1): -70.42

45. Liquid phase standard hot melt (J·mol-1·K-1): 100.0

Toxicological data

1. Acute toxicity[16]

LD50: 1600~2000mg/kg (rat oral )

LC50: 88000mg/m3 (rat inhalation, 1/2h)

2. Irritation [17]

Rabbit transdermal: 810mg (24h), severe stimulation.

Rabbit eye: 162mg, moderate irritation.

3. Subacute and chronic toxicity[18]

Rat inhalation 4.69g /m3, 8 hours a day, 75 days in total, no pathological changes. As exposure time increased, there was mild liver atrophy, steatosis, and cellular infiltration.

4. Mutagenicity[19] Microbial mutagenicity: Salmonella typhimurium 5700ppm. DNA inhibition: human fibroblasts 5000ppm (1h) (continuous). DNA damage: Hamster ovary 3000ppm. Sister chromatid exchange: hamster lung 5000ppm (1h) (continuous)

5. Teratogenicity[20] Rats were given the lowest toxic dose (TCLo) of 1250ppm (7h) by inhalation 6 to 15 days after pregnancy, causing developmental malformations in the musculoskeletal system and genitourinary system.

6. Carcinogenicity[21] IARC Carcinogenicity Comment: G2B, suspected human carcinogen.

7. Others[22] The lowest inhalation toxic concentration for rats (TCLo): 1250ppm (7h) (pregnant 6~15 days), causing abnormal musculoskeletal development and abnormal development of the genitourinary system.

Ecological data

1. Ecotoxicity[23]

LC50: 193mg/L (96h) (fathead minnow , dynamic); 310mg/L (96h) (fathead minnow, static); 200~250mg/L (96h) (bluegill, static); 224mg/L (48h) (water fleas); 256mg/L ( 96h) (sugar shrimp)

2. Biodegradability[24]

Good Aerobic biodegradation (h): 168~672

Anaerobic biodegradation (h): 672~2688

3. Non-biodegradability [25]

Photolysis maximum light absorption wavelength range (nm): 220~250

Photooxidation half-life in air – high (h): 458~4584

First-grade hydrolysis half-life (h): 704a

4. Other harmful effects[26] This substance is harmful to the environment and has an accumulation effect in groundwater. Special attention should be paid to aquatic life. Attention should also be paid to atmospheric pollution.

Molecular structure data

1. Molar refractive index: 16.38

2. Molar volume (cm3/mol): 67.8

3. Isotonic specific volume (90.2K ): 148.8

4. Surface tension (dyne/cm): 23.1

5. Polarizability: 6.49

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): 1.5

2. Number of hydrogen bond donors: 0

3. Number of hydrogen bond acceptors: 0

4. Number of rotatable chemical bonds: 0

5. Topological molecular polar surface area (TPSA): 0

6. Number of heavy atoms: 3

7. Surface charge: 0

8. Complexity: 2.8

9. Number of isotope atoms: 0

10. Determine the number of atomic stereocenters : 0

11. The number of uncertain atomic stereocenters: 0

12. The number of determined chemical bond stereocenters: 0

13. Uncertain chemical bond stereocenters Number of structural centers: 0

14. Number of covalent bond units: 1

Properties and stability

1. It has very little toxicity and recovers quickly after poisoning, so it can be used as an anesthetic. Irritating to skin and mucous membranes. Oral LD50 in young adult rats: 1.6mL/kg. The maximum allowable concentration in the air is 500×10-6. Gas masks should be worn during operation. When poisoning is discovered, leave the scene immediately and receive symptomatic treatment. The smallest among the chlorides of methane. The vapor is highly anesthetic, and inhaling large amounts can cause acute poisoning, with symptoms such as nasal pain, headache, and vomiting. Chronic poisoning can cause dizziness, fatigue, loss of appetite, impaired hematopoietic function, and reduced red blood cells. Liquid methylene chloride can cause dermatitis when it comes into contact with the skin. Rats died after inhaling vapor with a concentration of 90.5g/m3 for 90 minutes. The olfactory threshold concentration is 522mg/m3, and the maximum allowable concentration in the workplace is 1740mg/m3.

2. Stability[27] Stable

3. Incompatible substances[28] Alkali metals, aluminum

4. Conditions to avoid contact [29] Light, humid air

5. Polymerization hazard[30] No polymerization

6. Decomposition products[31] Hydrogen chloride, phosgene

Storage method

Storage Precautions[32] Stored in a cool, ventilated warehouse. Keep away from fire and heat sources. The storage temperature does not exceed 32°C and the relative humidity does not exceed 80%. Keep container tightly sealed. Should be stored separately from alkali metals and food chemicals, and avoidMixed storage. Equipped with the appropriate variety and quantity of fire equipment. The storage area should be equipped with emergency release equipment and suitable containment materials.

Synthesis method

1. Methane chlorination method: After mixing methane, chlorine and circulating gas, they are sent to the reactor for thermal chlorination reaction at 380~400°C. After the gas reaction product is cooled to 70-80°C by the cooler, it is sent to the hydrogen chloride absorption tower, where the hydrogen chloride in the gas product is absorbed and removed with water, and then sent to the alkali washing tower, where it is neutralized with alkali liquid to remove residual hydrochloric acid and free chlorine. The purified gas product is compressed, cooled, and condensed into crude chloride. The crude chloride is sent to the distillation process, and methyl chloride, methylene chloride and chloroform are steamed out through each distillation tower. Except for a part of the non-condensable gas that is vented, the rest is mixed with new materials for recycling. The controlled operating conditions are reaction temperature 400-420°C, ingredient ratio CH4:Cl2=4:1, and products based on methylene chloride can be obtained.

2. Methanol ammoniation method: After the methanol is gasified in the gasifier, it is mixed with the hydrogen chloride separated in the subsequent reaction, and then passed through the catalyst alumina or suboxone chloride or zinc chloride with activated carbon or pumice as the carrier. Phosphoric acid supported on the activated carbon can also be used as the catalyst. , react in a hydrochlorinator at 350°C to generate methyl chloride. The gaseous reaction product is washed with cold water and sodium hydroxide solution in a water washing tower or an alkali washing tower respectively. After removing unreacted methanol and hydrogen chloride, it is sent to the dehydrogenation tower and washed again with sulfuric acid to remove the dimethyl ether and dimethyl ether generated during the reaction. water to obtain methyl chloride. Methyl chloride reacts with chlorine at 410 to 420°C to produce dichloromethane and chloroform, as well as a small amount of carbon tetrachloride. After quenching, it is divided into a liquid phase containing dichloroethane and a gas phase containing uncondensed hydrogen chloride, unreacted methyl chloride, and chlorine. The gas phase is separated to separate hydrogen chloride, methyl chloride and chlorine for recycling. The liquid phase is first sent to the absorption tower and washed with dilute alkali and water to remove carbon tetrachloride, and then sent to the rectification tower to obtain dichloromethane and chloroform respectively through azeotropic distillation and rectification.

3. Methyl chloride chloride Methane chlorination has two processes: photochlorination and thermal chlorination.
Photochlorination is the reaction of methyl chloride and chlorine under 4000kW light. The reaction product is washed with alkali, compressed, condensed, dried and distilled to obtain the finished product.
Thermal chlorination is to mix methyl chloride and chlorine gas according to (2~2.5):1 (mass), and react at a reaction temperature of 400°C and a reaction pressure of 0.2MPa. The reaction product is washed with water, alkali washed, compressed, condensed, dried and distilled to obtain the finished product.

4. Use industrial methylene chloride as raw material , wash several times with concentrated sulfuric acid 1/8 to 1/10 of the raw material volume until the acid layer is colorless, then wash once with 5% sodium hydroxide solution, the dosage is 1/5 of the raw material volume, and wash twice with water. Then it is dried with anhydrous calcium chloride, the clear liquid is sucked out and then distilled, and the middle fraction is collected to obtain pure methylene chloride.

Purpose

1. In addition to being used in organic synthesis, this product is also widely used as a solvent in cellulose acetate film forming, cellulose triacetate spinning, petroleum dewaxing, aerosols and the production of antibiotics, vitamins and steroids. As well as cleaning, degreasing and release agents for metal surface paint layers.

2. Used for grain fumigation and refrigeration of low-pressure freezers and air-conditioning devices. It is used as an auxiliary blowing agent in the production of polyether urethane foam and as a blowing agent for extruded polysulfone foam.

3. Used as solvent, extraction agent and mutagen. For plant genetic research.

4. It has good dissolving power. It is a low-toxic, non-flammable and low-boiling point solvent among commonly used industrial solvents. It has good dissolving power for many resins, paraffin and fats. Mainly used as paint stripper, petroleum dewaxing solvent, extractant for thermally unstable substances, extractant for lanolin from wool and edible oil from coconut, and solvent for cellulose triacetate film film. It is also widely used in the manufacturing and processing of acetate fiber and vinyl chloride fiber, as well as the manufacturing of fire extinguishing agents, refrigerants, methenamine, etc.

5. Used in the electronics industry. Commonly used as a cleaning and degreasing agent.

6. Because it has an extremely low boiling point and is a flame-retardant solvent, it is widely used. In addition to being used as a cleaning solvent for aircraft engines, precision machinery, etc., it can also be used as a stripper for coatings. It can also be properly mixed with other solvents and used in various industrial cleanings.

7. It is also used as an ethyl fiber solvent, dental local anesthetic, refrigerant and fire extinguishing agent. It is a commonly used eluent for chromatographic separation and a common solvent for extraction separation.

8. Used as a solvent in the resin and plastic industry. [33]

extended-reading:https://www.newtopchem.com/archives/39733
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/123-1.jpg
extended-reading:https://www.newtopchem.com/archives/40251
extended-reading:https://www.newtopchem.com/archives/43932
extended-reading:https://www.newtopchem.com/archives/582
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/77.jpg
extended-reading:https://www.newtopchem.com/archives/575
extended-reading:https://www.cyclohexylamine.net/pentamethyldiethylenetriamine-cas-3030-47-5/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/72.jpg
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/15.jpg

Carvyl acetate

Carvyl acetate structural formula

Structural formula

Business number 02C5
Molecular formula C12H18O2
Molecular weight 194.27
label

2-Methyl-5-(2-propenyl)-2-cyclohexen-1-ol acetate,

2-methyl-5-(2-propenyl)-2-cyclohexenyl-1-ol acetate,

artificial flavors

Numbering system

CAS number:97-42-7

MDL number:MFCD00001559

EINECS number:202-580-2

RTECS number:OS8500000

BRN number:2330666

PubChem number:24900950

Physical property data

1. Properties: colorless liquid.

2. Density (g/mL, 20℃): 0.972

3. Relative vapor density (g/mL, air=1): Undetermined

4. Melting point (ºC): Undetermined

5. Boiling point (ºC, normal pressure): 115-116

6. Boiling point (ºC, 0.10mmHg): 77-79

7. Refractive index: Undetermined

8. Flash point (ºC): Undetermined

9. Specific rotation (º): Undetermined

10. Autoignition point or ignition temperature (ºC): Not determined

11. Vapor pressure (mmHg, 20.2ºC): Not determined

12. Saturation Vapor pressure (kPa, ºC): Undetermined

13. Heat of combustion (KJ/mol): Undetermined

14. Critical temperature (ºC): Undetermined

15. Critical pressure (KPa): Undetermined

16. Log value of oil-water (octanol/water) partition coefficient: Undetermined

17. Explosion upper limit (% ,V/V): Undetermined

18. Lower explosion limit (%,V/V): Undetermined

19. Solubility: Undetermined

Toxicological data

1. Skin/eye irritation: Standard Dresser test: rabbit skin contact, 500mg/24H.

2. Acute toxicity: Rat oral LD50 and rabbit skin LD50 values ​​are >5g/kg.

3. One day after applying the product on rabbit skin under closed conditions, erythema lasting for one day was observed. If a 4% concentration petroleum jelly preparation is used in a closed skin contact test on humans, no irritation will be observed after two days. The same dose has been tested to the maximum extent on humans and there is no allergic reaction.

Ecological data

None

Molecular structure data

Molecular property data:

1. Molar refractive index: 56.59

2. Molar volume (cm3/mol): 201.0

3. etc. Zhangratong (90.2K): 471.8

4. Surface tension (dyne/cm): 30.3

5. Dielectric constant:

6. Dipole moment (10-24cm3):

7. Polarizability: 22.43

ComputationalLearn data

1. Reference value for hydrophobic parameter calculation (XlogP): 2.6

2. Number of hydrogen bond donors: 0

3. Number of hydrogen bond acceptors: 2

4. Number of rotatable chemical bonds: 3

5. Number of tautomers: none

6. Topological molecule polar surface area 26.3

7. Number of heavy atoms: 14

8. Surface charge: 0

9. Complexity: 276

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 2

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

Colorless oily liquid.


It has a refreshing and sweet floral fragrance, with a refreshing feeling and a permeable aroma. Like propionate, it has been widely used more than 60 years ago In the formulas of various flavors.

Storage method

Store in a cool and ventilated place.

Synthesis method

Carve alcohol obtained by oxidation of limonene or reduction of carvone is obtained by acetylation.

Purpose

The ester structure has a softer aroma than carvone, and also has an herbal aroma, so it can be used in candies, chewing gums, baked goods, cold drinks, etc., and can be used as spearmint in daily chemical essences. It is used as a modifier, synergist, and harmonizer for fragrance, mint, and certain floral fragrances.

extended-reading:https://www.bdmaee.net/dioctyldichlorotin/
extended-reading:https://www.newtopchem.com/archives/787
extended-reading:https://www.newtopchem.com/archives/category/products/page/104
extended-reading:https://www.newtopchem.com/archives/40552
extended-reading:https://www.bdmaee.net/polyurethane-catalyst-smp/
extended-reading:https://www.newtopchem.com/archives/39832
extended-reading:https://www.newtopchem.com/archives/44602
extended-reading:https://www.bdmaee.net/fomrez-ul-6-butyltin-mercaptan-catalyst-momentive/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/TMR-4–TMR-4-trimer-catalyst-TMR-4.pdf
extended-reading:https://www.morpholine.org/polyurethane-catalyst-dabco-dc2-strong-gel-catalyst-dabco-dc2/

Ethyl mercaptan

Ethanethiol Structural Formula

Structural formula

Business number 01HY
Molecular formula C2H6S
Molecular weight 62.13
label

Ethyl sulfide; ethyl mercapto;,

Ethanethiol,

Ethyl thioalcohol,

aliphatic sulfur compounds,

Alcohols

Numbering system

CAS number:75-08-1

MDL number:MFCD00004887

EINECS number:200-837-3

RTECS number:KI9265000

BRN number:773638

PubChem number:24855097

Physical property data

1. Properties: Colorless and volatile liquid with a strong and unpleasant odor.

2. Density (g/mL, 25/4℃): 0.8315

3. Relative vapor density (g/mL, air=1): 2.14

4. Melting point (ºC): -147.89

5. Boiling point (ºC, normal pressure): 35

6. Refractive index (20ºC): 1.4310

7. Flash point (ºC): -45

8. Viscosity (mPa·s, 20ºC): 0.293

9. Fire point (ºC): 299

10. Critical temperature (ºC): 225.5

11. Critical pressure (KPa): 5.32

12. Vapor pressure (kPa, 20ºC): 58.928

13. Explosion upper limit (%, V/V): 18.2

14. Explosion lower limit (%, V/V): 2.8

15. Solubility: Slightly soluble Slightly soluble in water, the solubility in water is 1.5% (weight ratio) at 20°C, and it can dissolve 6.76g per liter of water at 25°C. It can form hydrates with water, and the hydrates will crystallize when the temperature is lower than 10℃. Easily soluble in alkaline water and organic solvents such as ethanol and ether.

Toxicological data

This product is highly toxic. Inhalation of large amounts will cause lowered blood pressure, difficulty breathing, and symptoms such as vomiting, diarrhea, and hematuria. Extremely toxic to aquatic life. May cause adverse consequences for the aquatic environment.

Ecological data

None

Molecular structure data

1. Molar refractive index: 19.21

2. Molar volume (cm3/mol): 75.5

3. Isotonic specific volume (90.2K ): 163.5

4. Surface tension (dyne/cm): 21.9

5. Polarizability (10-24cm3): 7.61

Compute chemical data

1. Hydrophobic parameter calculation reference value (XlogP): 0.9

2. Number of hydrogen bond donors: 0

3. Number of hydrogen bond acceptors: 0

4. Number of rotatable chemical bonds: 0

5. Number of tautomers:

6.Topological molecular polar surface area (TPSA): 0

7, Number of heavy atoms: 3

8, Surface charge: 0

9, Complexity: 2.8

10. The number of isotope atoms: 0

11. The number of determined atomic stereocenters: 0

12. The number of uncertain atomic stereocenters: 0

13. Determined number of stereocenters of chemical bonds: 0

14. Uncertain number of stereocenters of chemical bonds: 0

15. Number of covalent bond units: 1

Properties and stability

1. This product is highly toxic and can cause a drop in blood pressure and difficulty breathing in dogs at levels below 1%. Inhalation of large amounts by the human body can cause lowered blood pressure, difficulty breathing, and symptoms such as vomiting, diarrhea, and hematuria. Those with mild symptoms can gradually recover if they leave the scene in time; those with severe symptoms can be sent to the hospital for treatment immediately. The maximum allowable concentration in the air is 0.5×10-6. The production equipment should be sealed, the operation site should be forced to ventilate, and the operators should wear protective equipment.

2. Exist in smoke.
 

Storage method

1. Store sealed in a cool, dry and ventilated place. Store and transport according to regulations for flammable and toxic substances.

2. This product is generally used as an intermediate and is not sold as a commodity.

Synthesis method

1. Obtained from the reaction of sodium ethyl sulfate and sodium hydrosulfide. The sodium ethyl sulfate used in this method is prepared from absolute ethanol and fuming sulfuric acid. The total yield is 60%-65% (based on absolute ethanol). This method is relatively mature in China, but its disadvantages are long route, low yield, and high requirements for raw materials.

2. Obtained from the reaction of ethyl chloride and sodium hydrosulfide. The yield can reach more than 80% (based on chloroethanol).

3. Made of ethanol (or ethylene ) and hydrogen sulfide through gas phase catalytic reaction. The reaction is carried out under normal pressure. The catalyst uses activated alumina as a carrier and is impregnated with tungstic acid or sodium tungstate. The reaction temperature is 360-380°C. The yield of ethyl mercaptan (calculated as ethanol) can reach 70%-79%. 4. Laboratory preparation can be made from the reaction of thiourea and ethyl bromide.

4.Use thiourea and ethyl bromide as raw materials, heat and reflux in the solvent methanol for 3 to 4 hours. After the reaction is completed, recover the methanol, and then add 10% sodium hydroxide , continue to reflux for 4 hours, then cool to 5°C, slowly add 1:2 dilute sulfuric acid for acidification, and evaporate ethyl mercaptan under constant stirring. The reaction process is:

The crude ethyl mercaptan obtained is first washed with water to remove sodium hydroxide and sulfuric acid, then dried with anhydrous sodium sulfate to remove water, and finally fractionated and collected at 34-37°C The fraction is the finished product.
5. Using ethanol (or ethylene) and hydrogen sulfide gas as raw materials, the ratio is 1:3 (molar ratio), in the presence of activated alumina catalyst impregnated with tungstic acid (or sodium tungstate) Carry out the reaction and control the appropriate feeding rate [130g ethanol/(L catalyst·h)], the reaction temperature is 360~380℃, and the reaction pressure is normal pressure:

Excess sulfidation during the reaction Hydrogen gas can be recycled. The product ethyl mercaptan generated by the reaction should be captured at low temperature by freezing. After drying to remove the water, it can be fractionated and the 34-37°C fraction can be collected.

Purpose

1. Ethyl mercaptan is an important pesticide intermediate, used in the production of organophosphorus pesticides isopropylphos, phorate, acetate, systemic phosphorus, methyl systemic phosphorus, etc. It can also be used to produce antibacterial agent 401. When the concentration of ethyl mercaptan in the air is only one part per 50 billion, its odor can be detected, so it can be used as a warning agent and odorizer for natural gas and petroleum gas (the odor is detected at a concentration of 0.00019 mg/L can be smelled). Ethyl mercaptan can also be used in organic synthesis such as medicine.

2.Used in organic synthesis. Used as antioxidant, natural gas and petroleum gas warning agent.

extended-reading:https://www.bdmaee.net/methyl-tin-mercaptide-cas26636-01-1-coordinated-thiol-methyltin/
extended-reading:https://www.newtopchem.com/archives/595
extended-reading:https://www.newtopchem.com/archives/40086
extended-reading:https://www.cyclohexylamine.net/polyurethane-catalyst-dabco-dc2-strong-gel-catalyst-dabco-dc2/
extended-reading:https://www.bdmaee.net/polycat-15-catalyst-cas68479-98-1-evonik-germany/
extended-reading:https://www.newtopchem.com/archives/40409
extended-reading:https://www.newtopchem.com/archives/1141
extended-reading:https://www.newtopchem.com/archives/44810
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/Monobutyltin-trichloride-CAS1118-46-3-trichlorobutyltin.pdf
extended-reading:https://www.bdmaee.net/dmp-30/

Chloramphenicol

Chloramphenicol structural formula

Structural formula

Business number 017V
Molecular formula C11H12Cl2N2O5
Molecular weight 323.14
label

levomycin,

2,2-Dichloro-N-[2-hydroxy-1-(hydroxymethyl)-2-(4-nitrophenyl)ethyl]acetamide,

fungicides,

Genetic engineering research reagents

Numbering system

CAS number:56-75-7

MDL number:MFCD00078159

EINECS number:200-287-4

RTECS number:AB6825000

BRN number:2225532

PubChem number:24892250

Physical property data

1. Character: white or slightly yellow Green needle-like crystals.


2. Density ( g/mL,25/4℃) : 1.474


3. Relative vapor density (g/mL,AIR=1): Undetermined


4. Melting point ( ºC): 150.5-151.5(149.7-150.7). Can sublimate under high vacuum.


5. Boiling point ( ºC,Normal pressure): Undetermined


6. Boiling point ( ºC,5.2kPa): Undetermined


7. Refractive Index: Undetermined


8. Flashpoint (ºC): Undetermined


9. Specific optical rotation (º): 19.5° (c=6, EtOH) .


10. Autoignition point or ignition temperature (ºC): Not OK


11. Vapor pressure (kPa,25ºC): Undetermined


12. Saturation vapor pressure (kPa,60ºC): Undetermined


13. heat of combustion (KJ/mol): Undetermined


14. Critical temperature (ºC): Undetermined


15. Critical Pressure (KPa): Undetermined


16. Oil and water (octanol/Water) partition coefficient pair Value: Undetermined


17. Explosion limit (%,V/ V): Undetermined


18. Lower explosion limit (%,V/V): Not OK


19. Solubility: Slightly soluble in Water (2.5mg/ml, 25℃) , slightly soluble in propylene glycol (150.8mg/ml), easily soluble in methanol, ethanol, butanol, ethyl acetate, acetone, insoluble in ether, benzene, petroleum ether and vegetable oil.


Toxicological data

None

Ecological data

None

Molecular structure data

1, Molar refractive index:72.55

2. Molar volume (m3/mol):208.8


3. isotonic specific volume (90.2K):595.5


4. Surface Tension (dyne/cm):66.1


5. Polarizability10-24cm3): 28.76

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): None

2. Number of hydrogen bond donors: 3

3. Number of hydrogen bond acceptors: 5

4. Number of rotatable chemical bonds: 5

5. Number of tautomers: 2

6. Topological molecule polar surface area 115

7. Number of heavy atoms: 20

8. Surface charge: 0

9. Complexity: 342

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 2

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

None

Storage method

This product should be stored in a sealed, cool place away from light.

Synthesis method

Countries around the world have conducted a large number of studies on the production methods of chloramphenicol, which can be summarized as follows: (1) Yes Nitroacetophenone method; (2 ) styrene method; (3) Cinnamyl alcohol method; (4) p-nitrocinnamic alcohol method; (5) p-Nitrobenzaldehyde method. my country adopts the p-nitroacetophenone method, which obtains chloramphenicol from ethylbenzene through nitration; oxidation; bromination; salt formation; hydrolysis; acetylation; addition; reduction; decomposition; separation; and dichloroacetylation. .

Purpose

Broad-spectrum antibacterial antibiotics, used to treat typhoid fever and paratyphoid fever It is the drug of choice and one of the most effective drugs in the treatment of anaerobic bacterial infections. It is also used in the treatment of various infectious diseases caused by sensitive microorganisms. Due to serious adverse reactions, it is used less and less.


extended-reading:https://www.newtopchem.com/archives/76
extended-reading:https://www.bdmaee.net/fascat-4224-catalyst/
extended-reading:https://www.newtopchem.com/archives/44762
extended-reading:https://www.newtopchem.com/archives/category/products/page/114
extended-reading:https://www.bdmaee.net/wp-content/uploads/2021/05/143.jpg
extended-reading:https://www.newtopchem.com/archives/44864
extended-reading:https://www.bdmaee.net/wp-content/uploads/2020/06/75.jpg
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/CS90-catalyst–CS90-polyurethane-catalyst-CS90.pdf
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/Dibutyltin-acetate-CAS1067-33-0-tributyltin-oxide.pdf
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/64.jpg

Ethyl chrysanthemate

Structural formula of ethyl chrysanthemate

Structural formula

Business number 02C4
Molecular formula C12H20O2
Molecular weight 196
label

None

Numbering system

CAS number:97-41-6

MDL number:MFCD00001304

EINECS number:202-579-7

RTECS number:GZ1727000

BRN number:2045740

PubChem number:24902026

Physical property data

1. Properties: colorless or light yellow transparent liquid.

2. Density (g/mL, 20℃): 0.906

3. Relative vapor density (g/mL, air=1): Undetermined

4. Melting point (ºC): 178~179

5. Boiling point (ºC, normal pressure): Undetermined

6. Boiling point (ºC, 1.33kPa): 112

p>

7. Refractive index: 1.459~1.461

8. Flash point (ºC): 84

9. Specific rotation (º): Undetermined

10. Autoignition point or ignition temperature (ºC): Not determined

11. Vapor pressure (mmHg, 20.2ºC): Not determined

12. Saturated vapor pressure (kPa, ºC): Undetermined

13. Heat of combustion (KJ/mol): Undetermined

14. Critical temperature (ºC): Undetermined

15. Critical pressure (KPa): Undetermined

16. Log value of oil-water (octanol/water) distribution coefficient: Undetermined

17. Explosion upper limit (%, V /V): Undetermined

18. Lower explosion limit (%, V/V): Undetermined

19. Solubility: Insoluble in water, soluble in ethanol, methanol, acetone , benzene, toluene and other organic solvents.

Toxicological data

1. Acute toxicity: Rat oral LD50: 2600mg/kg; Rat inhalation LC: >1600mg/m3; Mouse oral LD50: 2600mg/kg; Mouse inhalation LC: >1600mg/m3; Mouse skin contact LD50 :>5mg/kg; Guinea pig oral LD50: 1900mg/kg; Mammalian inhalation LC50: >1600mg/m3; 2. Mutagenicity: Gene conversion and mitotic recombination test: Saccharomyces cerevisiae, 1pph;

Ecological data

None

Molecular structure data

1. Molar refractive index: 58.96

2. Molar volume (cm3/mol): 197.9

3. Isotonic specific volume (90.2K ): 482.6

4. Surface tension (dyne/cm): 35.3

5. Polarizability (10-24cm3)��23.37

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): None

2. Number of hydrogen bond donors: 0

3. Number of hydrogen bond acceptors: 2

4. Number of rotatable chemical bonds: 4

5. Number of tautomers: none

6. Topological molecule polar surface area 26.3

7. Number of heavy atoms: 14

8. Surface charge: 0

9. Complexity: 260

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 2

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

None

Storage method

None

Synthesis method

Diazoacetate method
Add 2,5-dimethyl-2,4-hexadiene into the reaction bottle, use copper powder with a diene dosage of 59/6 as a catalyst, and then add a little Hydroquinone is an antioxidant. Heat it to 120°C under nitrogen. Under rapid stirring, drop the methyl diazoacetate solution. N2 will be released during the dropwise addition. Control the reaction speed and add dropwise. After completion, continue stirring for 0.5 hours, cool, and distill away the excess diene. Then increase the vacuum degree to evaporate the methyl chrysanthemate. The recovered diene can be recycled. Use ethyl diazoacetate instead of methyl diazoacetate to obtain ethyl chrysanthemate.

Purpose

Mainly used as key intermediates for pesticides such as allethrin, penmethrin, phenethrin, and proparthrin.

extended-reading:https://www.bdmaee.net/4-acetyl-morpholine/
extended-reading:https://www.bdmaee.net/n-acetylmorpholine-cas1696-20-4-4-acetylmorpholine/
extended-reading:https://www.bdmaee.net/u-cat-sa-506-catalyst-cas122987-42-7-sanyo-japan/
extended-reading:https://www.bdmaee.net/bdmaee-manufacture/
extended-reading:https://www.bdmaee.net/cas-1704-62-7/
extended-reading:https://www.bdmaee.net/bismuth-isooctanoate-cas67874-71-9-2-ethylhexanoic-acid-bismuth/
extended-reading:https://www.newtopchem.com/archives/44126
extended-reading:https://www.bdmaee.net/niax-pm-40-low-viscosity-catalyst-momentive/
extended-reading:https://www.bdmaee.net/dabco-mb20-catalyst-cas-68007-43-3-evonik-germany/
extended-reading:https://www.newtopchem.com/archives/45142

Acetaldehyde

acetaldehyde structural formula

Structural formula

Business number 01HX
Molecular formula C2H4O
Molecular weight 44.05
label

anhydrous acetaldehyde,

Acetaldehyde,

Methanecarbaldehyde,

Ethanal,

Acetic aldehyde,

Aldehyde solvents,

aliphatic compounds

Numbering system

CAS number:75-07-0

MDL number:MFCD00006991

EINECS number:200-836-8

RTECS number:AB1925000

BRN number:505984

PubChem number:24844966

Physical property data

1. Properties: Colorless liquid with a strong irritating odor. [1]

2. Melting point (℃): -123.5[2]

3. Boiling point (℃): 20.8[3]

4. Relative density (water=1): 0.788 (16℃)[4]

5. Relative vapor density (air = 1): 1.52[5]

6. Saturated vapor pressure (kPa): 98.64 (20℃)[6]

7. Heat of combustion (kJ/mol): -1166.37[7]

8. Critical temperature (℃): 188[8]

9. Critical pressure (MPa): 6.4[9]

10. Octanol/water partition coefficient: 0.43[10]

11. Flash point (℃): -39 (CC); -40 (OC) [11]

12. Ignition temperature (℃): 175[12]

13. Explosion upper limit (%): 57[13]

14. Lower explosion limit (%): 4.0[14]

15. Solubility: soluble in water, miscible in ethanol, ether, Benzene, gasoline, toluene, xylene, etc. [15]

16. Critical density (g·cm-3): 0.286

17. Critical volume (cm 3·mol-1): 154

18.Lennard-Jones parameter (A): 11.98

19.Lennard -Jones parameter (K): 141.3

20. Solubility parameter (J·cm-3)0.5: 19.819

21.van der Waals area (cm2·mol-1): 4.490×109

22. van der Waals volume (cm3·mol-1): 28.810

23. Liquid phase standard heat of combustion (enthalpy) (kJ·mol-1): -1165.79

24. Liquid phase standard claims heat (enthalpy) (kJ·mol-1): -192.88

25. Liquid phase standard entropy (J·mol-1·K-1): 117.3

26. Liquid phase standard hot melt (J·mol-1·K-1): 89.05

27. Gas phase standard combustion heat (enthalpy) (kJ·mol -1): -1192.48

28. Gas phase standard claims heat (enthalpy) (kJ·mol-1): -166.19

29. Gas phase standard entropy (J·mol-1·K-1): 263.95

30. Gas phase standard formation free energy (kJ·mol -1): -133.0

31. Gas phase standard hot melt (J·mol-1·K-1 ): 55.32

Toxicological data

1. Acute toxicity[16]

LD50: 661mg/kg (rat oral)

LC50 : 13300ppm (rat inhalation, 4h)

2. Irritation[17]

Rabbit transdermal: 500mg, mild stimulation (open stimulation test)

Rabbit transdermal: 40mg , severe stimulation.

3. Subacute and chronic toxicity [18] Rats and guinea pigs can tolerate 100mg/kg orally for 6 months and reflexes will occur. Movement disorders and increased arterial pressure; oral administration of 10 mg/kg for 2 to 3 months can also cause the same changes.

4. Mutagenicity [19] Microbial mutagenicity: Salmonella typhimurium 7880μg/dish. Sister chromatid exchange: human lymphocytes 40 μmol/L. DNA damage: human lymphocytes 1560 μmol/L. DNA inhibition: human HeLa cells 10mmol/L. Sister chromatid exchange: human lymphocytes 1200 μmol/L.

5. Teratogenicity[20] Rats and mice were given the lowest toxic dose (TDLo) orally or intraperitoneally at different times after pregnancy. Causes developmental malformations in the respiratory system, hepatobiliary system, central nervous system, endocrine system, genitourinary system, musculoskeletal system, and craniofacial system (including nose and tongue).

6. Carcinogenicity [21] IARC Carcinogenicity Comment: G2B, suspected human carcinogen.

7. Others[22] Minimum intravenous toxic dose in mice (TDLo): 120 mg/kg (administered 7 to 9 days after pregnancy), embryo Mortality rate increases after bubble implantation and is toxic to fetal rats.

Ecological data

1. Ecotoxicity[23]

LC50: 37.2mg/L (96h) (fathead minnow); 53mg/L ( 96h) (bluegill sunfish)

EC50: 42mg/L (48h) (water flea); 30.8mg/L (96h) (fathead minnow)

2. Biodegradability [24] MITI-I test, initial concentration 100ppm, sludge concentration 30ppm, 80% degradation after 2 weeks.

3. Non-biodegradability[25] In the air, when the hydroxyl radical concentration is 5.00×105 pcs/cm3, the degradation half-life is 24h (theoretical).

The half-life of photolysis in the atmosphere is 8.4~16h

Molecular structure data

1. Molar refractive index: 11.50

2. Molar volume (cm3/mol): 58.8

3. Isotonic specific volume (90.2K ): 120.6

4. Surface tension (dyne/cm): 17.6

5. Polarizability (10-24cm3): 4.55

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): -0.3

2. Number of hydrogen bond donors: 0

3. Number of hydrogen bond acceptors: 1

4. Number of rotatable chemical bonds: 0

5. Number of tautomers: 2

6. Topological molecule polar surface area 17.1

7. Number of heavy atoms: 3

8. Surface charge: 0

9. Complexity: 10.3

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

1. Chemical properties: Lively, the carbonyl group in the molecule is easy to undergo addition, cyclization and polymerization reactions. Easily oxidized to acetic acid. Hydrates can be formed in water. It is easy to burn and explode when exposed to open flames or high heat.

2. Acetaldehyde is a flammable and toxic liquid. Irritating to eyes, skin and respiratory organs. Mild poisoning can cause symptoms such as asthma, coughing and headache, while severe poisoning can cause pneumonia and meningitis. Long-term exposure can cause a decrease in red blood cells and an increase in blood pressure. LD50 after oral administration to mice: 1232mg/kg. The maximum allowable concentration in the air at the operating site is 200*10-6. Operators must wear labor protection equipment.

3. Vapor and air form an explosive mixture with an explosion limit of 4.1%~57.0% (volume).

4. Stability[26] Stable

5. Incompatible substances[27] Strong acids, strong oxidants, strong reducing agents, strong bases, halogens, oxygen, flammable substances, ammonia, hydrogen sulfide, phosphorus, amines, alcohols, ketones, anhydrides, phenols, etc.

6. Conditions to avoid contact[28] Heating, contact with air

7. Polymerization hazard[29] Aggregation

Storage method

Storage Precautions[30] Stored in a cool, ventilated warehouse. Keep away from fire and heat sources. The storage temperature should not exceed 29°C. The packaging must be sealed and must not come into contact with air. They should be stored separately from oxidants, reducing agents, acids, etc. and avoid mixed storage. It should not be stored in large quantities or for long periods of time. Use explosion-proof lighting and ventilation facilities. It is prohibited to use mechanical equipment and tools that are prone to sparks. The storage area should be equipped with emergency release equipment and suitable containment materials.

Synthesis method

There are many production methods for acetaldehyde:

1. Ethylene direct oxidation method Ethylene and oxygen are directly oxidized to synthesize crude acetaldehyde in one step through a catalyst containing palladium chloride, copper chloride, hydrochloric acid and water. , and then distilled to obtain the finished product.

2. Ethanol oxidation method ethanol vapor Acetaldehyde is produced by oxidative dehydrogenation of air using meshes or particles of silver, copper or silver-copper alloy as catalysts at 300-480°C.

3. Acetylene direct hydration method Acetylene and water are directly hydrated under the action of mercury catalyst or non-mercury catalyst to obtain acetaldehyde. Due to the problem of mercury harm , has been gradually replaced by other methods

4. Ethanol dehydrogenation method: Under the action of copper catalyst adding cobalt, chromium, zinc or other compounds, ethanol is dehydrogenated to produce acetaldehyde.

5. Saturated hydrocarbon oxidation method.

Raw material consumption quota: acetylene hydration law Each ton of product consumes 610kg of 99% acetylene; the ethanol oxidation method consumes 1200kg of 95% ethanol; the ethylene oxidation method (one-step method) consumes 710kg of 99% ethylene and 300 cubic meters of oxygen (99%). Commercially available industrial products acetaldehyde, ethylene method acetaldehyde. The purity of aldehyde is 99.7%, and the purity of ethanol method is 98%.

6. Preparation method:

In the reaction bottle equipped with a fractionation device (the receiving bottle is cooled with an ice bath to reduce the volatilization loss of acetaldehyde), add paraacetaldehyde ( 2) 50g, 0.5 mol of concentrated sulfuric acid, a few grains of zeolite. Heat slowly, being careful not to make the temperature at the top of the fractionation column too high. The reaction should proceed slowly, because acetaldehyde and paraacetaldehyde can form an azeotrope, bp42. ℃ (molar ratio is acetaldehyde: paraacetaldehyde = 53.4:46.6). Most of the acetaldehyde (1) is evaporated at 21 ~ 25 ℃. Stop distillation when there is approximately 10 mL left in the reaction bottle (if it is distilled to dryness) Risk of explosion). The acetaldehyde prepared in this way can meet most uses. If higher purity acetaldehyde is required, fractionation can be carried out again and the 21°C fraction can be collected.

7. Preparation method:

In a reaction bottle equipped with a ventilation tube, a dropping funnel, and a distillation device (the receiving bottle can be filled with two gas washing bottles connected in sequence, filled with ether, and cooled with an ice-salt bath), add 135 mL (about 2 mol) of ethanol (2) ), add 1/3 volume of dilute sulfuric acid composed of 150mL concentrated sulfuric acid and 250mL water. Pour in carbon dioxide gas and heat to boiling. After diluting another 2/3 volume of sulfuric acid with 100 mL of water, add 200 g of sodium dichromate, stir to dissolve, and drop this solution into the reactant. The reaction is exothermic. The generated acetaldehyde is continuously taken out by the carbon dioxide gas flow, and the acetaldehyde is dissolved in ether. Complete the dripping in about 30 minutes, and then continue to pass carbon dioxide for 10 minutes. A solution of acetaldehyde in diethyl ether was obtained. Acetaldehyde cannot be distilled from its ether solution. To obtain pure acetaldehyde, proceed as follows: cool the acetaldehyde ether solution in an ice-water bath, slowly pass in dry nitrogen, and shake continuously. During this period, acetaldehyde amine crystals precipitate until the precipitation is complete . Filter with suction, wash with anhydrous ether, and dry to obtain 55g of acetaldehydeamine (3). In a reaction bottle equipped with a ventilation tube, a dropping funnel, and a distillation device (the receiving bottle is cooled with an ice-salt bath), add compound (3), dissolve it in 50 mL of water, add carbon dioxide gas, heat it in the water bath, and dropwise add 60 mL of concentrated solution. The acetaldehyde produced by dilute sulfuric acid mixed with sulfuric acid and 80 mL of water is continuously evaporated, and the dripping is completed in about 30 minutes. The boiling point of acetaldehyde is 21°C. Note: ① Take a small amount of transparent liquid and add nitrogen until it is saturated. If no precipitation precipitates, it means the reaction is over. [33]

Purpose

1. Used to prepare standard solutions, reducing agents, and bactericides when measuring aldehydes using colorimetric methods. Manufacture of paraacetaldehyde, acetic acid, butanol and pentaerythritol. Organic synthesis intermediates and solvents.

2. Industrially used to produce paraformaldehyde, acetic acid, ethyl acetate, pentaerythritol, plastics, synthetic rubber, synthetic resin, etc. It can also be used for spectrophotometric determination of aldehydes.

3. Reducing agent, bactericide, used to prepare standard solution when measuring aldehyde by colorimetric method. Industrially used to make polyacetaldehyde, acetic acid, synthetic rubber, etc.

4. Used to make acetic acid, acetic anhydride and synthetic resin. [31]

extended-reading:https://www.newtopchem.com/archives/44319
extended-reading:https://www.bdmaee.net/dabco-nem-niax-nem-jeffcat-nem/
extended-reading:https://www.morpholine.org/category/morpholine/page/4/
extended-reading:https://www.bdmaee.net/nt-cat-pc5-catalyst-cas3030-47-5-newtopchem/
extended-reading:https://www.newtopchem.com/archives/182
extended-reading:https://www.bdmaee.net/dabco-eg-33-triethylenediamine-in-eg-solution-pc-cat-td-33eg/
extended-reading:https://www.newtopchem.com/archives/39593
extended-reading:https://www.bdmaee.net/pc-cat-dmi-catalyst-nitro/
extended-reading:https://www.bdmaee.net/teda-l33b-polyurethane-amine-catalyst-tosoh/
extended-reading:https://www.newtopchem.com/archives/39736

1,3-di-o-tolylguanidine

1,3-di-o-tolylguanidine structural formula

Structural formula

Business number 02C3
Molecular formula C15H17N3
Molecular weight 239.32
label

di-o-toluene guanidine,

2 o-toluene guanidine,

Guanidine vulcanization accelerator

Numbering system

CAS number:97-39-2

MDL number:MFCD00008513

EINECS number:202-577-6

RTECS number:MF1400000

BRN number:None

PubChem number:24852467

Physical property data

1. Properties: White crystalline powder, odorless, slightly bitter, non-toxic.

2. Relative density (g/mL, 20℃): 1.10-1.02

3. Melting point (ºC): 178~179

4. Boiling point (ºC, kPa):

5. Critical temperature (ºC): 141℃

6. Solubility: soluble in chloroform, acetone, ethanol, slightly soluble in benzene, insoluble in Water, gasoline and carbon tetrachloride.

Toxicological data

Acute toxicity: Rat oral LD50:500mg /kg; Mouse peritoneal cavityLD5025mg/kg; Rabbit orally LDL080mg/kg; Breastfeeding Animals take it orallyLDL0120mg /kg;

Ecological data

This substance is slightly hazardous to water.

Molecular structure data

1. Molar refractive index: 74.22

2. Molar volume (cm3/mol): 221.5

3. Isotonic specific volume (90.2K ): 555.5

4. Surface tension (dyne/cm): 38.5

5. Dielectric constant:

6. Dipole moment (10-24cm3):

7. Polarizability: 29.42

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): 3.1

2. Number of hydrogen bond donors: 2

3. Number of hydrogen bond acceptors: 1

4. Number of rotatable chemical bonds: 3

5. Mutual interaction Number of isomers: 2

6. Topological molecule polar surface area 50.4

7. Number of heavy atoms: 18

8. Surface charge: 0

9. Complexity: 288

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. The number of uncertain stereocenters of atoms: 0

13. The number of determined stereocenters of chemical bonds: 0

14. The number of uncertain stereocenters of chemical bonds: 0

15. Number of covalent bond units: 1

Properties and stability

Avoid contact with strong oxidizing agents.

This product has low toxicity, slightly bitter taste and no odor.

It is very active at vulcanization temperature, especially when it is higher than the critical temperature, and has good vulcanization flatness.

Soluble in chloroform, acetone, ethanol, slightly soluble in benzene, insoluble in gasoline and water.

Storage method

Stored in a cool, ventilated warehouse. Keep away from fire and heat sources. Keep container tightly sealed. should be kept away from oxidizer, do not store together. Equipped with the appropriate variety and quantity of fire equipment. The storage area should be equipped with emergency release equipment and suitable containment materials.

Synthesis method

It can be obtained by the reaction of cyanogen chloride and o-toluidine and then hydrolysis, or by the reaction of o-toluidine and carbon disulfide to form di-o-toluidine thiourea , and then obtained by desulfurizing with lead oxide in ammonia water.

Purpose

Can be used for natural rubber and diene synthetic rubber.

This product is an important active agent for acidic accelerators, especially thiazole and sulfenamide accelerators. It has a super accelerator effect when used together with accelerator M. Mainly used for thick-walled products, tread rubber, buffer layer, rubber roller covering rubber, etc.

extended-reading:https:////www.bdmaee.net/wp-content/uploads/2022/08/FASCAT2004-catalyst-CAS7772-99-8-stannous-chloride.pdf
extended-reading:https://www.bdmaee.net/nn-dimethyl-ethanolamine-2/
extended-reading:https://www.newtopchem.com/archives/category/products/page/74
extended-reading:https://www.morpholine.org/category/morpholine/page/5396/
extended-reading:https://www.newtopchem.com/archives/44258
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/17.jpg
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/Pentamethyldiethylenetriamine-CAS3030-47-5-Jeffcat-PMDETA.pdf
extended-reading:https://www.newtopchem.com/archives/44019
extended-reading:https://www.morpholine.org/high-efficiency-reactive-foaming-catalyst/
extended-reading:https://www.newtopchem.com/archives/45153

Acetonitrile

acetonitrile structural formula

Structural formula

Business number 01HW
Molecular formula C2H3N
Molecular weight 41.05
label

Methyl cyanide,

Cyanomethane,

Methyl cyanide,

Ethaneitrile,

synthetic raw materials

Numbering system

CAS number:75-05-8

MDL number:MFCD00001878

EINECS number:200-835-2

RTECS number:AL7700000

BRN number:741857

PubChem number:24856425

Physical property data

1. Properties: colorless liquid with pungent odor. [1]

2. Melting point (℃): -45[2]

3. Boiling point (℃): 81.6[3]

4. Relative density (water=1): 0.79 (15℃)[4]

5. Relative vapor density (air = 1): 1.42[5]

6. Saturated vapor pressure (kPa): 13.33 (27℃)[6]

7. Heat of combustion (kJ/mol): -1264.0[7]

8. Critical temperature (℃): 274.7[8]

9. Critical pressure (MPa): 4.83[9]

10. Octanol/water partition coefficient: -0.34[10]

11. Flash point (℃): 12.8 (CC); 6 (OC) [11]

12. Ignition temperature (℃): 524[12]

13. Explosion upper limit (%): 16.0[13]

14. Lower explosion limit (%): 3.0[14]

15. Solubility: miscible with water, soluble in most organic substances such as ethanol and ether Solvent. [15]

16. Relative density (g/mL, 20/4ºC): 0.7822

17. Relative density (g/mL, 25/ 4ºC): 0.7766

18. Relative density (g/mL, 30/4ºC): 0.77125

19. Refractive index (20ºC): 1.34411

20 .Refractive index (25ºC): 1.34163

21. Viscosity (mPa·s, 15ºC): 0.375

22. Viscosity (mPa·s, 30ºC): 0.325

23. Heat of evaporation (KJ/kg, 25ºC): 33.25

24. Heat of evaporation (KJ/kg, 80.5ºC): 29.84

25. Heat of fusion (KJ /mol): 8.17

26. Heat of formation (KJ/mol, 25ºC): 51.50

27. Heat of combustion (KJ/mol, 25ºC): 1266.09

28. Specific heat capacity (KJ/(kg·K), 25ºC, constant pressure): 1.31

29. Electrical conductivity (S/m, 25ºC): 6×10-10

30. Body expansion coefficient (K-1, 20ºC): 0.00137

Toxicological data

1. Acute toxicity[16]

LD50: 2460mg/kg (rat oral); 1250mg/kg (rabbit dermal )

LC50: 7551ppm (rat inhalation, 8h)

2. Irritation [17] Rabbit transdermal : 500mg, mild stimulation (open stimulation test)

3. Subacute and chronic toxicity [18] Cats inhale its vapor 7mg/m 3, 4 hours a day for a total of 6 months. One month after exposure to the poison, the conditioned reflex began to be destroyed. Pathological examination showed pathological changes in liver, kidney and lung.

4. Mutagenicity [19] Sex chromosome deletion and non-disjunction: Saccharomyces cerevisiae 47600ppm. Sister chromatid exchange: hamster ovary 5g/L.

5. Teratogenicity [20] Hamsters inhaled the lowest toxic dose (TCLo) 5000ppm (1h) 8 days after pregnancy, causing developmental malformations of the central nervous system. Hamsters inhaled the lowest toxic dose (TCLo) 8000ppm (1h) 8 days after pregnancy, causing developmental malformations of the musculoskeletal system.

6. Others[21] The lowest oral toxic dose in hamsters (TDLo): 300mg/kg (8 days of pregnancy), causing abnormal musculoskeletal development .

Ecological data

1. Ecotoxicity[22] LC50: 1640mg/L (96h) (fathead minnow)

2. Biological Degradability[23]

Aerobic biodegradability (h): 168~672

Anaerobic biodegradability (h) : 672~2688

3. Non-biodegradability [24]

Photooxidation half-life in water (h): 2.80 ×106~1.10×108

Photooxidation half-life in air (h): 1299~12991

Level 1 Hydrolysis half-life (h): >150000a

Molecular structure data

1. Molar refractive index: 11.22

2. Molar volume (cm3/mol): 54.9

3. Isotonic specific volume (90.2K ): 120.0

4. Surface tension (dyne/cm): 22.7

5. Polarizability (10-24cm3): 4.45

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): 0

2. Number of hydrogen bond donors: 0

3. Number of hydrogen bond acceptors: 1

4. Number of rotatable chemical bonds: 0

5. Number of tautomers:

6. Topological molecular polar surface area (TPSA): 23.8

7. Number of heavy atoms: 3

8. Surface charge: 0

9. Complexity: 29.3

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters Number: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

1. Chemical properties: ① Acetonitrile is a stable compound and is not easily oxidized or reduced, but there is a triple bond between carbon and nitrogen, so addition reactions are easy to occur. For example:

Addition with hydrogen halide, addition with hydrogen sulfide, addition with alcohol in the presence of inorganic acid, addition with acid or anhydride, addition with hydroxylamine.

② Hydrolysis occurs in the presence of acid or alkali to generate amide, which is further hydrolyzed to generate acid.

③ Reduction to generate ethylamine.

④ React with Grignard reagent, and the product is hydrolyzed to obtain ketones.

⑤ Acetonitrile can react with metallic sodium, sodium alcohol or sodium amide.

2. This product is flammable and toxic. The explosion range in air is 3.0% to 16% (volume), and the maximum allowable concentration of acetonitrile in the workplace is 70mg/m3. In acetonitrile-saturated air, rats will not die if they stay for more than 4 hours, but mice will die in 15 minutes. The oral LD50 of acetonitrile is 3.8g/kg for rats and 0.2g/kg for mice. Inhalation of acetonitrile vapor or absorption through the skin can cause poisoning, with symptoms such as nausea, vomiting, difficulty breathing, extreme fatigue and confusion, increased concentrations of cyanide and thiocyanide in the blood, and proteinuria. If acetonitrile splashes on your skin, flush it with plenty of water. If it splashes into your eyes, flush it with clean water for more than 15 minutes. If you are poisoned by inhaling acetonitrile or cyanide vapor, you should immediately move the person to fresh air and seek medical treatment. Production equipment should be sealed to prevent escape, leakage, dripping and leakage, and operators should wear protective equipment.

3. Stability[25] Stable

4. Incompatible substances[26] Acids, alkalis, strong oxidants, strong reducing agents, alkali metals, sulfuric acid, fuming sulfuric acid, chlorosulfonic acid, perchlorate

5. Polymerization hazard[27] No polymerization

6. Decomposition products[28] Hydrogen cyanide

Storage method

1. This product is packed in iron drums, with a net weight of 150kg per drum. It can also be stored and transported by truck tanker or railway tanker. The storage location should be a cool, ventilated warehouse away from fire and heat sources. The warehouse temperature should not exceed 30°C and protected from direct sunlight. Pay special attention to the integrity of the packaging to prevent poisoning caused by leakage. It should be stored separately from oxidants and acids. The lighting and ventilation facilities in the storage room should be explosion-proof, and the switch should be located outside the warehouse. Configure fire-fighting equipment of corresponding varieties and quantities. It is prohibited to use mechanical equipment and tools that are prone to sparks. Check regularly for leaks, and load and unload with care when handling to prevent damage to packaging and containers.

2. Storage precautions [29] Store in a cool, ventilated warehouse. Keep away from fire and heat sources. The storage temperature should not exceed 37°C. Keep container tightly sealed. They should be stored separately from oxidants, reducing agents, acids, alkalis, combustibles and edible chemicals, and avoid mixed storage. Use explosion-proof lighting and ventilation facilities. It is prohibited to use mechanical equipment and tools that are prone to sparks. The storage area should be equipped with emergency release equipment and suitable containment materials.

Synthesis method

There are many methods for producing acetonitrile, among which the main industrial production methods include acetic acid ammoniation method, acetylene ammoniation method and propylene ammonia oxidation by-product method.

1. Acetic acid amination method: using acetic acid and ammonia as raw materialsMaterials are reacted under the action of aluminum oxide catalyst at a temperature of 360-420°C to synthesize acetonitrile in one step. The reaction liquid is subjected to water absorption and distillation to obtain the finished product. Raw material consumption quota: acetic acid (98%) 1763kg/t, liquid ammonia (99.5%) 691kg/t.

2. Acetylene amination method: Using acetylene and ammonia as raw materials and aluminum oxide catalyst, acetonitrile is synthesized in one step at a temperature of 500-600°C. Raw material consumption quota: acetylene 10231m3, liquid ammonia (99.4%) 1007kg/t.

3. Propylene ammonia oxidation by-products Method: When propylene, ammonia and air are used as raw materials and acrylonitrile is synthesized through a catalyst, acetonitrile is also produced as a by-product. Each ton of acrylonitrile can produce 25-100kg acetonitrile by-product.

4. From acetamide and penta Obtained from dehydration of phosphorus oxide.

5. Obtained from the reaction of dimethyl sulfate and sodium cyanide.

Refining method: Industrial products often contain impurities such as water, hydrocarbons, acrylonitrile, acetic acid, and ammonia. During purification, the water in the crude acetonitrile is first removed by azeotropic distillation using an azeotropic mixture of acetonitrile and water, and then rectification is performed to remove high boiling point substances. For further refining, it can be dried with calcium chloride, filtered and then refluxed with 0.5% to 1% phosphorus pentoxide, and then distilled under normal pressure. Repeat this operation until phosphorus pentoxide is no longer colored (during reflux and distillation, a drying tube containing phosphorus pentoxide should be connected to prevent moisture in the air from entering), and then add newly melted potassium carbonate for distillation to remove trace amounts. of phosphorus pentoxide, and finally fractionated to obtain the pure product.

In addition to azeotropic distillation and calcium chloride dehydration, anhydrous sodium sulfate, potassium carbonate, type 4A molecular sieve or silica gel can also be used for dehydration. If there is a trace amount of unsaturated nitrile, it can be removed by refluxing with a small amount of potassium hydroxide aqueous solution (1 mL of 1% potassium hydroxide aqueous solution for every 1000 mL of acetonitrile) at the beginning. If it contains isonitrile, it can be removed by treatment with concentrated hydrochloric acid, then dried with potassium carbonate and then distilled.

6. Place absolutely dry acetamide and phosphoric anhydride in a copper container, install a fractionating column and a water condenser, heat, control the temperature so that the reaction is not too violent, and react until no distillation occurs. So far, the crude product has been collected:

Add saturated potassium carbonate solution to the above crude product until no bubbles appear, then add a small amount of dry potassium carbonate, stir evenly, and let it stand. Pour out the crude nitrile in the upper layer and carry out fractionation together with phosphoric anhydride. The distillate at 80-82°C is collected as the finished product.

Purpose

1. Acetonitrile is the raw material for the preparation of orthoacetate, and is used to produce methyl dipermethrin and 2-chloro-3,3,3-trifluoro-1-propenyl-2,2-dimethylcyclo It is an intermediate of propane carboxylate (propane carboxylic acid ester) and can be used as a raw material for sulfonylurea herbicide intermediates and pyrimidine derivatives. It can be used in the pharmaceutical industry to produce vitamin B1 and in the synthetic rubber industry to extract the C4 fraction. agent. Used as chromatographic analysis standard material, solvent and gas chromatography stationary solution.

2. Mainly used as solvent. For example, it can be used as a solvent for extracting butadiene, a solvent for synthetic fibers and a solvent for some special coatings. Solvent used in the petroleum industry to remove tar, phenol and other substances from petroleum hydrocarbons. In the oil industry, it is used as a solvent for extracting fatty acids from animal and vegetable oils, and in medicine, it is used as a reaction medium for the recrystallization of steroid drugs. When a polar solvent with a high dielectric constant is required, a binary azeotropic mixture of acetonitrile and water is often used: containing 84% acetonitrile, boiling point 76°C. Acetonitrile is an intermediate for medicine (vitamin B1) and spices, and a raw material for manufacturing s-triazine nitrogen fertilizer synergist. Also used as a denaturant for alcohol. Used as fatty acid extraction agent, alcohol denaturant, butadiene extraction agent and solvent for acrylonitrile synthetic fiber. In addition, it can also be used to synthesize ethylamine, acetic acid, etc., and also has many uses in fabric dyeing and lighting industries.

3. Used in the preparation of vitamin B1 and other drugs and spices, and also used as fatty acid extraction agent. [30]

extended-reading:https://www.bdmaee.net/cas-1067-33-0-2/
extended-reading:https://www.bdmaee.net/butylenestannonic-acid/
extended-reading:https://www.newtopchem.com/archives/44383
extended-reading:https://www.bdmaee.net/u-cat-sa-831-catalyst-cas111-34-2-sanyo-japan/
extended-reading:https://www.cyclohexylamine.net/tetramethyl-13-diaminopropane-tmeda/
extended-reading:https://www.bdmaee.net/cas-26636-01-1/
extended-reading:https://www.bdmaee.net/niax-a-99/
extended-reading:https://www.bdmaee.net/dabco-nem-catalyst-cas100-74-3-evonik-germany/
extended-reading:https://www.bdmaee.net/author/12dma/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/Pentamethyldiethylenetriamine-CAS3030-47-5-Jeffcat-PMDETA.pdf

2′,4′-Dimethylacetylacetanilide

2',4'-dimethylacetylacetanilide structural formula

Structural formula

Business number 02C2
Molecular formula C12H15NO2
Molecular weight 205.25
label

AAMX,

Acetoacet-m-xylidide

Numbering system

CAS number:97-36-9

MDL number:MFCD00039836

EINECS number:202-576-0

RTECS number:AK4585000

BRN number:None

PubChem number:24878218

Physical property data

1. Properties: White crystalline powder.

2. Density (g/mL, 20℃): 1.24

3. Relative vapor density (g/mL, air=1): Undetermined

4. Melting point (ºC): 88-91

5. Boiling point (ºC, normal pressure): Undetermined

6. Boiling point (ºC, kPa): Undetermined

p>

7. Refractive index: Undetermined

8. Flash point (ºC): 171

9. Specific rotation (º): Undetermined

10. Autoignition point or ignition temperature (ºC): Not determined

11. Vapor pressure (mmHg, 20.2ºC): Not determined

12. Saturated vapor pressure ( kPa, ºC): Undetermined

13. Heat of combustion (KJ/mol): Undetermined

14. Critical temperature (ºC): Undetermined

15. Critical pressure (KPa): Undetermined

16. Log value of oil-water (octanol/water) distribution coefficient: Undetermined

17. Explosion upper limit (%, V/ V): Undetermined

18. Lower explosion limit (%, V/V): Undetermined

19. Solubility: Undetermined

Toxicological data

Acute toxicity: Rat oral LD50: 3mg/kg;

Ecological data

None

Molecular structure data

1. Molar refractive index: 59.47

2. Molar volume (cm3/mol): 185.1

3. Isotonic specific volume (90.2K ): 470.9

4. Surface tension (dyne/cm): 41.8

5. Polarizability (10-24cm3): 23.57

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): None

2. Number of hydrogen bond donors: 1

3. Number of hydrogen bond acceptors: 2

4. Number of rotatable chemical bonds: 3

5. Number of tautomers: 8

6. Topological molecule polar surface area 46.2

7. Number of heavy atoms: 15

8. Surface charge: 0

9. Complexity: 250

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

None

Storage method

None

Synthesis method

It is synthesized from ethyl acetoacetate and 2,4-dimethylaniline.

Purpose

Mainly used as intermediates for dyes, organic pigments, and pesticides.

extended-reading:https://www.bdmaee.net/catalyst-c-225/
extended-reading:https://www.bdmaee.net/niax-ef-705-foaming-catalyst-momentive/
extended-reading:https://www.bdmaee.net/drier-butyl-tin-oxide-fascat-4101/
extended-reading:https://www.newtopchem.com/archives/44986
extended-reading:https://www.bdmaee.net/nt-cat-tmbpa-catalyst-cas68479-98-1-newtopchem/
extended-reading:https://www.bdmaee.net/fascat-4200/
extended-reading:https://www.newtopchem.com/archives/44402
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/-EG-33-triethylenediamine-in-EG-solution-PC-CAT-TD-33EG.pdf
extended-reading:https://www.bdmaee.net/bismuth-isooctanoate-cas67874-71-9-2-ethylhexanoic-acid-bismuth/
extended-reading:https://www.newtopchem.com/archives/category/products/semi-rigid-foams-catalyst

BDMAEE:Bis (2-Dimethylaminoethyl) Ether

CAS NO:3033-62-3

China supplier

For more information, please contact the following email:

Email:sales@newtopchem.com

Email:service@newtopchem.com

Email:technical@newtopchem.com

BDMAEE Manufacture !