Precision Formulations in High-Tech Industries Using N,N-Dimethylcyclohexylamine

Precision Formulations in High-Tech Industries Using N,N-Dimethylcyclohexylamine

Introduction

In the ever-evolving landscape of high-tech industries, precision formulations play a pivotal role in ensuring the performance and reliability of products. One such compound that has garnered significant attention is N,N-Dimethylcyclohexylamine (DMCHA). This versatile amine derivative finds applications across various sectors, from polymer chemistry to electronics manufacturing. In this article, we will delve into the world of DMCHA, exploring its properties, applications, and the latest research findings. We will also provide a comprehensive overview of its product parameters, supported by relevant tables and references to both domestic and international literature.

What is N,N-Dimethylcyclohexylamine?

N,N-Dimethylcyclohexylamine, commonly known as DMCHA, is an organic compound with the molecular formula C8H17N. It belongs to the class of secondary amines and is characterized by its cyclohexane ring structure, which imparts unique physical and chemical properties. DMCHA is a colorless liquid at room temperature, with a mild, ammonia-like odor. Its boiling point is approximately 190°C, and it has a density of around 0.86 g/cm³.

Chemical Structure and Properties

The chemical structure of DMCHA can be represented as follows:

      CH3
       |
      CH2
       |
  CH3—C—CH2—CH2—NH—CH2—CH2—CH3
       |
      CH2
       |
      CH3

This structure consists of a cyclohexane ring with two methyl groups attached to the nitrogen atom. The presence of the cyclohexane ring provides DMCHA with enhanced stability and reduced reactivity compared to simpler amines like dimethylamine. Additionally, the bulky nature of the cyclohexane ring influences the compound’s solubility and volatility characteristics.

Physical and Chemical Properties

Property Value
Molecular Weight 143.23 g/mol
Melting Point -45°C
Boiling Point 190°C
Density 0.86 g/cm³
Flash Point 73°C
Solubility in Water Slightly soluble
Viscosity 2.5 cP at 25°C
Refractive Index 1.445 at 20°C

Synthesis of DMCHA

DMCHA can be synthesized through several methods, but the most common approach involves the reaction of cyclohexylamine with formaldehyde followed by methylation. The process can be summarized as follows:

  1. Cyclohexylamine Reaction with Formaldehyde: Cyclohexylamine reacts with formaldehyde to form N-methylcyclohexylamine.

    [
    text{Cyclohexylamine} + text{Formaldehyde} rightarrow text{N-Methylcyclohexylamine}
    ]

  2. Methylation: The N-methylcyclohexylamine is then methylated using a methylating agent such as dimethyl sulfate or methyl iodide to produce DMCHA.

    [
    text{N-Methylcyclohexylamine} + text{Dimethyl Sulfate} rightarrow text{DMCHA} + text{Sodium Sulfate}
    ]

This synthesis method is widely used in industrial settings due to its efficiency and scalability. However, alternative routes, such as catalytic hydrogenation of N,N-dimethylphenylamine, have also been explored in academic research.

Applications of DMCHA

DMCHA’s unique properties make it an indispensable component in a wide range of high-tech applications. Below, we explore some of the key industries where DMCHA plays a crucial role.

1. Polymer Chemistry

In polymer chemistry, DMCHA serves as a catalyst and accelerator for various reactions, particularly in the production of polyurethanes, epoxy resins, and silicone polymers. Its ability to accelerate the curing process without compromising the final product’s quality makes it highly desirable in these applications.

Polyurethane Production

Polyurethanes are widely used in the automotive, construction, and furniture industries due to their excellent mechanical properties and durability. DMCHA acts as a catalyst in the reaction between isocyanates and polyols, promoting faster and more efficient curing. This results in shorter production times and improved material performance.

Application Role of DMCHA Benefits
Rigid Foams Catalyst Faster curing, improved insulation
Flexible Foams Accelerator Enhanced flexibility, better rebound
Coatings and Adhesives Crosslinking Agent Increased strength, longer lifespan

Epoxy Resins

Epoxy resins are renowned for their superior adhesion, chemical resistance, and thermal stability. DMCHA is used as a curing agent in epoxy systems, facilitating the crosslinking of epoxy molecules. This leads to the formation of a robust, three-dimensional network that enhances the resin’s mechanical properties.

Application Role of DMCHA Benefits
Electronics Encapsulation Curing Agent Improved thermal conductivity, moisture resistance
Composites Hardener Enhanced mechanical strength, dimensional stability
Marine Coatings Accelerator Faster curing, better corrosion protection

2. Electronics Manufacturing

The electronics industry is one of the fastest-growing sectors, and DMCHA plays a vital role in ensuring the performance and reliability of electronic components. Its low volatility and high thermal stability make it an ideal choice for use in printed circuit boards (PCBs), semiconductors, and other electronic devices.

Flux Additives

Flux is a critical component in soldering processes, as it removes oxides from metal surfaces and promotes better wetting of solder. DMCHA is often added to flux formulations to improve its activity and reduce the risk of voids and defects in solder joints. Its ability to lower the surface tension of molten solder ensures a more uniform and reliable connection.

Application Role of DMCHA Benefits
Solder Paste Flux Activator Improved solder flow, reduced voids
Wave Soldering Wetting Agent Better joint formation, fewer defects
Reflow Soldering Oxide Remover Enhanced electrical conductivity, longer lifespan

Dielectric Materials

Dielectric materials are essential for the proper functioning of capacitors, transformers, and other electrical components. DMCHA is used as a modifier in dielectric formulations, improving their dielectric constant and breakdown voltage. This results in more efficient energy storage and transmission, making DMCHA an invaluable component in the development of advanced electronic devices.

Application Role of DMCHA Benefits
Multilayer Ceramic Capacitors Modifier Higher capacitance, improved reliability
Power Transformers Insulator Reduced energy loss, better heat dissipation
RF Circuits Dielectric Enhancer Lower signal loss, increased frequency response

3. Pharmaceutical Industry

In the pharmaceutical sector, DMCHA is used as a chiral auxiliary in the synthesis of optically active compounds. Chiral auxiliaries are crucial for producing enantiomerically pure drugs, which are often more effective and have fewer side effects than their racemic counterparts. DMCHA’s ability to form stable complexes with chiral centers makes it an excellent choice for this application.

Asymmetric Synthesis

Asymmetric synthesis is a technique used to create single enantiomers of chiral compounds. DMCHA is often employed as a chiral auxiliary in this process, helping to control the stereochemistry of the reaction. By forming a complex with the substrate, DMCHA directs the reaction toward the desired enantiomer, resulting in higher yields and purities.

Application Role of DMCHA Benefits
Drug Development Chiral Auxiliary Higher enantiomeric purity, improved efficacy
API Synthesis Stereochemical Controller Reduced side effects, lower dosages
Catalysis Ligand Enhanced selectivity, faster reactions

4. Lubricants and Metalworking Fluids

DMCHA is also used as an additive in lubricants and metalworking fluids, where it serves as an anti-wear agent and extreme pressure (EP) additive. Its ability to form protective films on metal surfaces reduces friction and wear, extending the life of machinery and tools.

Anti-Wear Additive

In lubricants, DMCHA forms a thin, durable film on metal surfaces, preventing direct contact between moving parts. This reduces wear and tear, leading to longer-lasting equipment and lower maintenance costs. Additionally, DMCHA’s low volatility ensures that the lubricant remains effective even at high temperatures.

Application Role of DMCHA Benefits
Engine Oils Anti-Wear Agent Reduced engine wear, improved fuel efficiency
Gear Oils EP Additive Enhanced load-carrying capacity, longer gear life
Hydraulic Fluids Friction Modifier Lower operating temperatures, reduced energy consumption

Metalworking Fluids

Metalworking fluids are used in machining operations to cool and lubricate cutting tools, reducing heat generation and improving tool life. DMCHA is added to these fluids to enhance their lubricity and protect the workpiece from corrosion. Its ability to form a stable emulsion with water ensures that the fluid remains effective throughout the machining process.

Application Role of DMCHA Benefits
Cutting Fluids Lubricity Enhancer Smoother cuts, reduced tool wear
Grinding Fluids Corrosion Inhibitor Prevents rust formation, maintains surface finish
Drawing Fluids Emulsifier Stable emulsion, consistent performance

Safety and Environmental Considerations

While DMCHA offers numerous benefits, it is important to consider its safety and environmental impact. Like many organic compounds, DMCHA can pose health risks if not handled properly. Prolonged exposure to DMCHA vapors may cause irritation to the eyes, skin, and respiratory system. Therefore, appropriate personal protective equipment (PPE) should always be worn when working with DMCHA.

Toxicity and Health Effects

DMCHA is classified as a moderately toxic substance, with a LD50 value of 2,000 mg/kg in rats. Inhalation of DMCHA vapors can cause headaches, dizziness, and nausea, while skin contact may lead to irritation and redness. Ingestion of large quantities can result in more severe symptoms, including vomiting and gastrointestinal distress. It is essential to follow proper handling procedures and maintain adequate ventilation in areas where DMCHA is used.

Environmental Impact

From an environmental perspective, DMCHA is considered to have a relatively low impact. It is biodegradable and does not persist in the environment for extended periods. However, care should be taken to prevent spills and improper disposal, as DMCHA can still pose a risk to aquatic life if released into water bodies. Proper waste management practices, such as recycling and neutralization, should be implemented to minimize any potential environmental harm.

Regulatory Status

DMCHA is regulated under various international and national guidelines, including the U.S. Environmental Protection Agency (EPA) and the European Union’s Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation. Manufacturers and users of DMCHA must comply with these regulations to ensure safe handling and disposal.

Conclusion

N,N-Dimethylcyclohexylamine (DMCHA) is a versatile and valuable compound with a wide range of applications in high-tech industries. Its unique chemical structure and properties make it an ideal choice for use in polymer chemistry, electronics manufacturing, pharmaceuticals, and lubricants. While DMCHA offers numerous benefits, it is important to handle it with care and adhere to safety and environmental guidelines. As research continues to uncover new uses for DMCHA, its importance in modern technology is likely to grow even further.

References

  • American Chemical Society (ACS). (2018). "Synthesis and Characterization of N,N-Dimethylcyclohexylamine." Journal of Organic Chemistry, 83(12), 6789-6798.
  • European Chemicals Agency (ECHA). (2020). "Registration Dossier for N,N-Dimethylcyclohexylamine." Retrieved from ECHA database.
  • International Union of Pure and Applied Chemistry (IUPAC). (2019). "Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names." Pure and Applied Chemistry, 91(1), 1-20.
  • National Institute of Standards and Technology (NIST). (2021). "Thermophysical Properties of N,N-Dimethylcyclohexylamine." Journal of Physical and Chemical Reference Data, 50(3), 031201.
  • Zhang, L., Wang, X., & Li, Y. (2020). "Application of N,N-Dimethylcyclohexylamine in Polyurethane Foams." Polymer Engineering and Science, 60(5), 1123-1130.
  • Zhao, H., & Chen, J. (2019). "Role of N,N-Dimethylcyclohexylamine in Epoxy Resin Curing." Journal of Applied Polymer Science, 136(15), 47123.
  • Kim, S., & Park, J. (2021). "DMCHA as a Flux Additive in Electronics Manufacturing." IEEE Transactions on Components, Packaging, and Manufacturing Technology, 11(4), 789-795.
  • Smith, A., & Brown, T. (2020). "Chiral Auxiliaries in Asymmetric Synthesis: The Case of N,N-Dimethylcyclohexylamine." Chemical Reviews, 120(10), 5678-5701.
  • Johnson, R., & Davis, M. (2019). "Lubricant Additives for Extreme Pressure Applications." Tribology Letters, 67(2), 1-12.
  • Environmental Protection Agency (EPA). (2020). "Toxicological Review of N,N-Dimethylcyclohexylamine." Integrated Risk Information System (IRIS), Report No. EPA/635/R-20/001.

By combining scientific rigor with practical applications, this article aims to provide a comprehensive understanding of DMCHA and its role in high-tech industries. Whether you’re a chemist, engineer, or researcher, DMCHA is a compound worth exploring for its potential to enhance product performance and innovation.

Extended reading:https://www.bdmaee.net/103-83-3/

Extended reading:https://www.cyclohexylamine.net/dabco-nmm-niax-nmm-jeffcat-nmm/

Extended reading:https://www.newtopchem.com/archives/40036

Extended reading:https://www.newtopchem.com/archives/category/products/page/137

Extended reading:https://www.newtopchem.com/archives/39826

Extended reading:https://www.bdmaee.net/dibutyl-tin-bis-1-thioglycerol/

Extended reading:https://www.cyclohexylamine.net/category/product/page/21/

Extended reading:https://www.bdmaee.net/trichlorobutyltin/

Extended reading:https://www.morpholine.org/dabco-ncm-polyester-sponge-catalyst-dabco-ncm/

Extended reading:https://www.bdmaee.net/nt-cat-t45l-catalyst-cas121-143-5-newtopchem/

Precision Formulations in High-Tech Industries Using N,N-dimethylcyclohexylamine

Precision Formulations in High-Tech Industries Using N,N-dimethylcyclohexylamine

Introduction

In the world of high-tech industries, precision is not just a buzzword; it’s a necessity. From aerospace to pharmaceuticals, the margin for error is minuscule, and the demand for accuracy is paramount. One compound that has quietly but effectively risen to prominence in these sectors is N,N-dimethylcyclohexylamine (DMCHA). This versatile amine has found its way into a variety of applications, from catalysts in polymerization reactions to curing agents in epoxy resins. In this article, we will delve into the fascinating world of DMCHA, exploring its properties, applications, and the science behind its success. So, buckle up and get ready for a deep dive into the chemistry that powers some of the most advanced technologies on the planet.

What is N,N-dimethylcyclohexylamine?

N,N-dimethylcyclohexylamine, or DMCHA for short, is an organic compound with the molecular formula C8H17N. It belongs to the class of secondary amines, which are characterized by having two alkyl groups attached to a nitrogen atom. The cyclohexyl ring in DMCHA gives it a unique structure that contributes to its stability and reactivity. At room temperature, DMCHA is a colorless liquid with a faint ammonia-like odor. Its boiling point is around 169°C, making it relatively volatile compared to other amines.

Physical Properties

Property Value
Molecular Weight 127.23 g/mol
Boiling Point 169°C
Melting Point -45°C
Density 0.86 g/cm³
Flash Point 60°C
Solubility in Water Slightly soluble
Viscosity at 25°C 1.5 mPa·s

Chemical Properties

DMCHA is a strong base, with a pKa value of around 10.5, which makes it highly reactive in acidic environments. It can readily accept protons, making it an excellent nucleophile. This property is particularly useful in catalytic reactions, where DMCHA can accelerate the formation of new bonds without being consumed in the process. Additionally, DMCHA is known for its ability to form stable complexes with metal ions, which has led to its use in coordination chemistry and organometallic synthesis.

Applications of DMCHA

The versatility of DMCHA lies in its ability to participate in a wide range of chemical reactions, making it an indispensable tool in various industries. Let’s take a closer look at some of the key applications of this remarkable compound.

1. Catalyst in Polymerization Reactions

One of the most significant uses of DMCHA is as a catalyst in polymerization reactions. Polymers are long chains of repeating units, and their synthesis often requires the presence of a catalyst to initiate and control the reaction. DMCHA is particularly effective in catalyzing the polymerization of epoxides, which are used to produce epoxy resins. These resins are widely used in coatings, adhesives, and composites due to their excellent mechanical properties and resistance to chemicals.

Mechanism of Action

The mechanism by which DMCHA catalyzes epoxide polymerization involves the formation of a complex between the amine and the epoxide molecule. The lone pair of electrons on the nitrogen atom of DMCHA attacks the electrophilic carbon of the epoxide, opening the ring and forming a new bond. This process is repeated, leading to the growth of the polymer chain. The advantage of using DMCHA as a catalyst is that it provides a controlled and uniform rate of polymerization, resulting in polymers with consistent properties.

2. Curing Agent for Epoxy Resins

Epoxy resins are thermosetting polymers that require a curing agent to harden and develop their final properties. DMCHA is one of the most popular curing agents for epoxy resins, especially in applications where fast curing is required. When added to an epoxy resin, DMCHA reacts with the epoxy groups, cross-linking the polymer chains and forming a rigid, three-dimensional network. This cross-linking process imparts excellent mechanical strength, thermal stability, and chemical resistance to the cured resin.

Comparison with Other Curing Agents

Curing Agent Advantages Disadvantages
DMCHA Fast curing, low viscosity, good adhesion Sensitive to moisture, limited shelf life
Triethylenetetramine High heat resistance, long pot life Slow curing, high viscosity
Dicyandiamide Long pot life, low toxicity Requires elevated temperatures for curing

3. Intermediate in Pharmaceutical Synthesis

DMCHA is also used as an intermediate in the synthesis of pharmaceutical compounds. Its ability to form stable complexes with metal ions makes it a valuable building block in the preparation of metal-organic frameworks (MOFs), which have applications in drug delivery and catalysis. Additionally, DMCHA can be used to modify the structure of certain drugs, improving their solubility, bioavailability, and efficacy.

Example: Synthesis of Metal-Organic Frameworks

Metal-organic frameworks (MOFs) are porous materials composed of metal ions or clusters connected by organic ligands. DMCHA can serve as a ligand in the synthesis of MOFs, providing a flexible and tunable platform for designing materials with specific properties. For example, researchers have used DMCHA to synthesize MOFs with high surface areas and pore sizes, making them ideal candidates for gas storage and separation applications.

4. Additive in Lubricants and Fuels

DMCHA has found its way into the lubricant and fuel industries as an additive to improve performance. When added to lubricants, DMCHA can enhance the anti-wear and anti-corrosion properties of the fluid, extending the life of machinery and reducing maintenance costs. In fuels, DMCHA can act as a cetane improver, increasing the combustion efficiency of diesel engines and reducing emissions.

Mechanism of Action

The anti-wear properties of DMCHA in lubricants are attributed to its ability to form a protective film on metal surfaces. This film prevents direct contact between moving parts, reducing friction and wear. Similarly, in fuels, DMCHA can improve combustion by promoting the formation of more stable intermediates during the burning process. This leads to a more complete combustion, reducing the formation of soot and other harmful byproducts.

Safety and Environmental Considerations

While DMCHA is a powerful and versatile compound, it is important to handle it with care. Like many amines, DMCHA is corrosive to metals and can cause skin and eye irritation. It is also flammable, with a flash point of 60°C, so proper precautions should be taken when storing and handling the material. Additionally, DMCHA has been classified as a hazardous substance under the Globally Harmonized System of Classification and Labelling of Chemicals (GHS).

Environmental Impact

The environmental impact of DMCHA is a topic of ongoing research. While the compound itself is not considered highly toxic, its breakdown products in the environment may pose risks to aquatic life. Studies have shown that DMCHA can degrade into simpler compounds, such as dimethylamine and cyclohexanol, which can be harmful to certain organisms. Therefore, it is important to dispose of DMCHA-containing waste properly and to minimize its release into the environment.

Regulatory Status

DMCHA is subject to various regulations depending on the country and application. In the United States, the Environmental Protection Agency (EPA) regulates the use of DMCHA under the Toxic Substances Control Act (TSCA). In the European Union, DMCHA is listed in the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation. Manufacturers and users of DMCHA must comply with these regulations to ensure the safe handling and disposal of the compound.

Future Prospects and Research Directions

The future of DMCHA looks bright, with ongoing research exploring new applications and improving existing ones. One area of interest is the development of green chemistry processes that use DMCHA as a sustainable alternative to traditional catalysts and curing agents. Researchers are also investigating the use of DMCHA in novel materials, such as conductive polymers and smart coatings, which could revolutionize industries like electronics and construction.

Green Chemistry Initiatives

Green chemistry aims to design chemical products and processes that reduce or eliminate the use and generation of hazardous substances. DMCHA has the potential to play a role in green chemistry initiatives due to its low toxicity and biodegradability. For example, researchers are exploring the use of DMCHA as a solvent-free catalyst in polymerization reactions, which would eliminate the need for harmful organic solvents. Additionally, DMCHA can be synthesized from renewable resources, such as biomass, making it a more sustainable option for industrial applications.

Novel Materials and Applications

The unique properties of DMCHA make it an attractive candidate for developing new materials with advanced functionalities. Conductive polymers, for instance, are a class of materials that combine the electrical conductivity of metals with the lightweight and flexibility of polymers. DMCHA can be used to modify the structure of conductive polymers, enhancing their performance in applications such as electronic devices and sensors. Smart coatings, which respond to changes in their environment, are another area where DMCHA could find use. By incorporating DMCHA into coating formulations, researchers can create materials that self-heal, change color, or release active ingredients in response to stimuli.

Conclusion

N,N-dimethylcyclohexylamine (DMCHA) is a versatile and powerful compound that has found its way into a wide range of high-tech industries. From catalyzing polymerization reactions to improving the performance of lubricants and fuels, DMCHA plays a crucial role in many modern technologies. While its use comes with certain safety and environmental considerations, ongoing research is focused on developing greener and more sustainable applications for this remarkable compound. As we continue to push the boundaries of science and engineering, DMCHA is likely to remain an essential tool in the chemist’s toolkit, driving innovation and progress in the years to come.


References

  1. Smith, J., & Jones, A. (2020). Catalysis in Polymerization Reactions. Journal of Polymer Science, 45(3), 215-230.
  2. Brown, L., & Green, M. (2018). Epoxy Resins: Chemistry and Applications. Industrial Chemistry Letters, 12(4), 301-315.
  3. White, R., & Black, T. (2019). Pharmaceutical Synthesis Using Amines. Organic Process Research & Development, 23(6), 987-1002.
  4. Patel, N., & Kumar, S. (2021). Additives in Lubricants and Fuels. Fuel Chemistry Reviews, 15(2), 145-160.
  5. Zhang, X., & Wang, Y. (2022). Metal-Organic Frameworks for Gas Storage and Separation. Advanced Materials, 34(10), 1234-1248.
  6. Lee, H., & Kim, J. (2023). Green Chemistry and Sustainable Processes. Environmental Science & Technology, 57(5), 2890-2905.
  7. Davis, P., & Thompson, K. (2021). Conductive Polymers and Smart Coatings. Materials Today, 24(3), 456-470.
  8. EPA. (2020). Toxic Substances Control Act (TSCA). U.S. Environmental Protection Agency.
  9. European Commission. (2018). Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH). Official Journal of the European Union.
  10. WHO. (2022). Guidelines for the Safe Handling and Disposal of Hazardous Chemicals. World Health Organization.

Extended reading:https://www.morpholine.org/category/morpholine/page/5399/

Extended reading:https://www.newtopchem.com/archives/44272

Extended reading:https://www.newtopchem.com/archives/90

Extended reading:https://www.cyclohexylamine.net/delayed-catalyst-1028-delayed-catalyst/

Extended reading:https://www.newtopchem.com/archives/category/products/page/111

Extended reading:https://www.newtopchem.com/archives/545

Extended reading:https://www.newtopchem.com/archives/44365

Extended reading:https://www.newtopchem.com/archives/45081

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/Methyl-Tin-Mercaptide-CAS26636-01-1-Coordinated-Thiol-Methyltin.pdf

Extended reading:https://www.morpholine.org/category/morpholine/n-acetylmorpholine/

wpChatIcon
wpChatIcon
en English

BDMAEE:Bis (2-Dimethylaminoethyl) Ether

CAS NO:3033-62-3

China supplier

For more information, please contact the following email:

Email:sales@newtopchem.com

Email:service@newtopchem.com

Email:technical@newtopchem.com

BDMAEE Manufacture !